研究生: |
陳志瑋 Chih-Wei Chen |
---|---|
論文名稱: |
膜厚對離子鍍著奈米晶氮氧化鋯薄膜結構及性質之影響 The Structure and Properties of Nano-crystalline Zr(N,O) Thin Films on AISI 304 Stainless Steel: Effect of Film Thickness |
指導教授: |
喻冀平
Ge-Ping Yu 黃嘉宏 Jia-Hong Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 膜厚 、氮氧化鋯 、薄膜 |
外文關鍵詞: | Effect of Film Thickness, Zr(N,O), ZrNxOy, Thickness Effect, Effect of Thickness |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗的目的在研究膜厚對於單層氮氧化鋯薄膜的影響。此薄膜使用中空陰極放電離子鍍著系統在氬、氧、氮的氣氛中,於450℃溫度鍍著在AISI 304不□鋼上。這些薄膜為奈米晶的結構,晶粒尺寸均在15 nm以下。關於顏色的變化,可以發現到通入0、2、5 sccm 氧氣所鍍著出來的薄膜為本質色,而通入8 sccm 氧氣的薄膜則為非本質色。在本研究中,藉由比較XRD和XPS的結果發展出一套方法來鑑定氮化鋯、氮氧化鋯、單斜晶二氧化鋯共同存在於氮氧化鋯的薄膜中。氧化相或是氮氧化相的數量會隨著不同的膜厚而有所改變。對於通入8 sccm 氧氣的薄膜而言,膜厚的改變會使得其結構變得不穩定,像是X光繞射峰的移動或是非晶化。隨著膜厚的增加,薄膜的硬度也隨之增加。氮氧化鋯薄膜的殘留硬力隨著通入氧氣的增加形成氧化物而降低,但對於膜厚卻沒有很明顯的趨勢變化。不□鋼基材的壓縮殘留應力隨著薄膜厚度的增加而有增加的趨勢。在抗腐蝕性方面,與薄膜厚度比較起來,堆積密度扮演著一個主要的角色。在動態極化掃描5 % 的氯化鈉溶液中,不同的AISI 304 不□鋼的表面會造成腐蝕電位的改變。
The aim of this work was to investigate effects of film thickness on the single layered zirconium oxynitride (Zr(N,O)) films. These films were deposited on AISI 304 stainless steel substrates, at a constant temperature 450℃, by using hollow cathode discharge ion-plating system (HCD-IP) in an argon-oxygen-nitrogen atmosphere. The grain sizes of less than 15 nm show nanocrystalline structure of the films. Regarding to color variations, the intrinsic colorations of Zr(N,O) films were observed, the films are deposited at 0, 2, and 5 sccm O2 flow rate, and the extrinsic colorations of films were observed for deposited condition of 8 sccm O2 flow. Three phases (ZrN, Zr2ON2 and m-ZrO2) in the films could be identified by a modified method developed in this study from XRD and XPS results. The amount of oxide and/or oxynitride phases changed with the different film thickness for the Zr(N,O) films. The structure of Zr(N,O) films became unstable, peak of X-ray diffraction pattern shifting and amorphization, with the different film thickness for the films deposited at 8 sccm O2 flow rate. The increase of hardness with increasing film thickness was observed. The residual stress of Zr(N,O) films was relieved with increasing oxygen flow rate forming oxide in the film, but no specific trends were correlated with the film thickness. The compressive residual stress of stainless steel substrate increased with increasing the thickness of Zr(N,O) film. As compared with film thickness, the packing density of films plays a significant role in corrosion resistance. In potentiodynamic polarization scan, different surface condition of mirror type AISI 304 stainless steel contributed to the different corrosion potential in 5% NaCl solution.
[1] U. K. Wiiala, I. M. Penttinen, A. S. Korhonen, Surf. Coat. Technol. 41 (1990) 191.
[2] L. V. Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol. 53 (1992) 25.
[3] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films 228 (1993) 233.
[4] P. C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
[5] E. Kelesoglu, C. Mitterer, M. K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
[6] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112 (1999) 133.
[7] Mehdi H. Kazemeini, Alexander A. Berezin, Nobuhiko Fukuhara, Thin Solid Films 372 (2000) 70.
[8] N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
[9] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197.
[10] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films 447 (2004) 449.
[11] Bittar, D. Cochrane, S. Caughley, I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223.
[12] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 200 (2006) 2917.
[13] B. Zega, Surf. Coat. Technol. 39/40 (1989) 507.
[14] C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H. Stori, Vaccum 46 (1995) 1281.
[15] J. M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
[16] K. H. Chang, “A Study of Nanocrystalline Zr(N,O) Thin Films Deposited by Ion Plating”, Master Thesis, 2005. National Tsing Hua University, R.O.C.
[17] Z. E. Tsai, “Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film”, Master Thesis, 2005. National Tsing Hua University, R.O.C.
[18] J. Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films 197, (1991) 117.
[19] U. C. Oh, J. H. Je, J. Appl. Phys. 74, (1993) 1692.
[20] J. H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys. 81(9), (1997) 6126.
[21] W. J. Chou, G. P. Yu, J. H. Huang, Surf. Coat. Technol., 140, (2001) 206.
[22] F. Y. Ouyang, “Effect of film thickness and Ti interlayer thickness on the structure and properties of nanocrystalline TiN thin film deposited by unbalanced magnetron (UBM) sputtering”, Master Thesis, 2004. National Tsing Hua University, R.O.C.
[23] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p.562.
[24] W. J. Chou, G. P. Yu, J. H. Huang, Surf. Coat. Technol. 149, (2002) 7.
[25] N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol., 142-144 (2001) 615.
[26] F. Fabreguette, L. Imhoff, M. Maglione, B. Domenichini, M.C.M. Lucas, P.Sibillot, S. Bourgeois, M. Saciolotti, Chem. Vap. Depos. 6 (3) (2000) 615.
[27] C. Rousselot, N. Martin, Surf. Coat. Technol. 142-144 (2001) 206.
[28] R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195.
[29] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 511.
[30] W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B, 80/81 (1993) 445.
[31] R. A. Dugdale, J. Mater. Sci., 1(1966) 160.
[32] W. D. Sproul, Thin Solid Films 107(1983) 141.
[33] Navrotsky, J. Alloys Compd. 321 (2001) 300.
[34] S. Ventkartaraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys. 92 (5) (2002) 2461.
[35] S. Colard, H, Kupfer, W. Hoyer, G. Hecht, Vacuum 55 (1999) 1453.
[36] J. Musil and J. Wolfe, Mater. Sci. Eng., A 163 (1993) 211.
[37] J. E. Hove, and W. C. Riley (Eds.), “Modern Ceramic: Some Principles and Concepts”, John Wiley, CA, 1965, p.352.
[38] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991) 1463.
[39] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
[40] L. E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188.
[41] J. H. Huang, K. W. Lau, G. P. Yu, Surf. Coat. Technol. 191 (2005) 17.
[42] F. Jones, J. Vac. Sci. Technol. A 6 (1988) 3088.
[43] H. Heuer, M. Ruhle, “Phase Transformation in ZrO2 –Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
[44] Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys., Condens. Mat., 15 (2003) 7707.
[45] F. Lang, J. Mater. Sci 17 (1982) 247.
[46] R. Rujkorakan, J. R. Sites, J. Vac. Sci. Technol. A 4 (1986) 568.
[47] M. G. Krishna, K. Narasimha, S. Mohan, Thin Solid Films, 193 (1990) 690.
[48] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
[49] X. J. Chen, K. A. Khor, S. H Chan, L. G. Yu, Mater. Sci. Eng. 335 (2002) 246.
[50] S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R, Jayavel, M. Wuttig, J. Appl. Phys. 92(7) (2002) 3599.
[51] W. H. Lowdermilk, D. Milam, F. Rainer, Thin Solid Films, 73 (1980) 155.
[52] W. T. Pawlewicz, D. D. Hays, P. M. Martin, Thin Solid Films, 73 (1980) 169.
[53] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Thin Solid Films, 469-470 (2004) 11.
[54] P. Carvalho, A. C. Fernandes, L. Rebouta, F. Vaz, L, Cunha, U. Kreissig, N. P. Barradas, A. R. Ramos, E. Alves, Nucl. Instrum. Methods Phys. Res., Sect. B, 249 (2006) 458.
[55] P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, O. Banakh, J. Appl. Phys. 98 (2005) 23715/1.
[56] P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J. P. Riviere, E. Alves, A. Cavaleiro, Surf. Coat. Technol., 200 (2005) 748.
[57] F. Wells, “Structural Inorganic Chemistry”, 5th ed. Clarendon Press, Oxford, 1984, p257.
[58] S. J. Clarke, C. W. Michie, M. J. Rosseinsky, J. Solid State Chem. 146 (1999) 399.
[59] M. Lerch, J. Mater. Sci. Lett. 17 (1998) 441.
[60] E. Fluglein, R. Hock, M. Lerch, Z. Anorg. Allg. Chem. 623 (1997) 304.
[61] J. C. Gilles, Bull. Soc. Chim. Fr. 22 (1962) 2118.
[62] R. Collongues, J. C. Gilles, A. M. Lejus, M. Perez, Y. Jorba, D. Michel, Mater. Res. Bull. 2 (1967) 837.
[63] S. Bertaux, P. Reynders, J. M. Heintz, M. Lerch, Mater. Sci. Eng., B 121 (2005) 137.
[64] Y. Makino. M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol. 98 (1998) 934.
[65] S. H. Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System”, Master Thesis, 2006. National Tsing Hua University, R.O.C.
[66] S. J. Chiu, “Oxygen Doping on the Structure and Properties of Nanocrystalline Ti(N,O) Thin Film”, Master Thesis, 2006. National Tsing Hua University, R.O.C.
[67] K. Takizawa, M. Fukushima, K. KuroKawa, H. Okada and H. Imai, Hyomen Gijutsu 42 (1991) 1152.
[68] H. Uchida, S. Inoue, K. Koterazawa, Mater. Sci. Eng. A 234–236 (1997) 649.
[69] T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng. 45 (1996) 425.
[70] T. Kado, R. Makabe, S. Mochizuki, S. Nakajima, M. Araki, Boshoku Gijutsu Corros. Eng. 36 (1987) 551.
[71] W. L. Pan, G. P. Yu, J. H. Huang, Surf. Coat. Technol. 110, (1998) 111.
[72] B. F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol. 111 (1999) 16.
[73] J. Y. Chen, G. P. Yu, J. H. Huang, Mater. Chem. Phys., 65 (2000) 310.
[74] W. J. Chou, G. P. Yu, J. H. Huang, Corros. Sci., 43 (2001) 2023.
[75] C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, Master Thesis, 2003. National Tsing Hua University, R.O.C.
[76] E. Ariza, L.A. Rocha, F. Vazc, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alvese, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469 (2004) 274.
[77] S. C. Ferreira, E. Ariza, L. A. Rocha, J. R. Gomes, P. Carvalho, F. Vaz, A. C. Fernandes, L. Rebouta, L. Cunha, E. Alves, Ph. Goudeau, J.P. Rivière, Surf. Coat. Technol. 200 (2006) 6634.
[78] W. J. Chou, C. H. Sun, G.P. Yu, J. H. Huang, Mater. Chem. Phys, 82 (2003) 228.
[79] W. J. Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, 2003, Ph. D Thesis, National Tsing Hua University, R.O.C.
[80] G. J. Leggett, J.C Vickerman, Int. J. Mass Spec. Ion Proc., 122 (1992) 281.
[81] P. Scherrer, Gött. Nachr 2, (1918) 98.
[82] C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
[83] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, New Jersey, 2001, p.466.
[84] K. C. Lan, “Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating”, Master Thesis, 2006. National Tsing Hua University, R.O.C.
[85] http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum =CCERAF
[86] W. C. Oliver, G. M. Pharr, J. Mater. Res. 7(6) (1992) 1564.
[87] CIE, Colorimetry, Tech. Rep., 15, Bureau Central de la CIE, 1971, p.1.
[88] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Tech. Rept. Supplement No. 2 to CIE publication No. 15, Bureau Central de la CIE, 1978, p.1.
[89] American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, 1941, p.3.
[90] Metals Handbook 9th ed., Vol. 13, 1988, ASM INTERNATIONAL, Metals Park, OH, p.212.
[91] ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350.
[92] Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. Interface Anal. 24 (1996) 448.
[93] M. Del Re, R. Gouttebaron, J-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
[94] S. Robinson, P-M. A. Sherwood, Surf. Interface Anal. 6 (1984) 6.
[95] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 416.
[96] C. T. Chen, Y. C. Song, G. P. Yu, and J. H. Huang, J. Mater. Eng. Perform., 7 (3) (1998) 324.
[97] C. H. Yeh, “Effect of Film thickness on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Ion Plating”, Master Thesis, 2004. National Tsing Hua University, R.O.C.
[98] M. H. Wang, “Effects of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by Unbalanced Magnetron Sputtering (UBM)”, Master Thesis, 2004. National Tsing Hua University, R.O.C.
[99] H. Ohmori, K. Katahira, J. Nagata, J. Komotori, CIRP Annals. 51/1 (2002) 491.