簡易檢索 / 詳目顯示

研究生: 陳志瑋
Chih-Wei Chen
論文名稱: 膜厚對離子鍍著奈米晶氮氧化鋯薄膜結構及性質之影響
The Structure and Properties of Nano-crystalline Zr(N,O) Thin Films on AISI 304 Stainless Steel: Effect of Film Thickness
指導教授: 喻冀平
Ge-Ping Yu
黃嘉宏
Jia-Hong Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 103
中文關鍵詞: 膜厚氮氧化鋯薄膜
外文關鍵詞: Effect of Film Thickness, Zr(N,O), ZrNxOy, Thickness Effect, Effect of Thickness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗的目的在研究膜厚對於單層氮氧化鋯薄膜的影響。此薄膜使用中空陰極放電離子鍍著系統在氬、氧、氮的氣氛中,於450℃溫度鍍著在AISI 304不□鋼上。這些薄膜為奈米晶的結構,晶粒尺寸均在15 nm以下。關於顏色的變化,可以發現到通入0、2、5 sccm 氧氣所鍍著出來的薄膜為本質色,而通入8 sccm 氧氣的薄膜則為非本質色。在本研究中,藉由比較XRD和XPS的結果發展出一套方法來鑑定氮化鋯、氮氧化鋯、單斜晶二氧化鋯共同存在於氮氧化鋯的薄膜中。氧化相或是氮氧化相的數量會隨著不同的膜厚而有所改變。對於通入8 sccm 氧氣的薄膜而言,膜厚的改變會使得其結構變得不穩定,像是X光繞射峰的移動或是非晶化。隨著膜厚的增加,薄膜的硬度也隨之增加。氮氧化鋯薄膜的殘留硬力隨著通入氧氣的增加形成氧化物而降低,但對於膜厚卻沒有很明顯的趨勢變化。不□鋼基材的壓縮殘留應力隨著薄膜厚度的增加而有增加的趨勢。在抗腐蝕性方面,與薄膜厚度比較起來,堆積密度扮演著一個主要的角色。在動態極化掃描5 % 的氯化鈉溶液中,不同的AISI 304 不□鋼的表面會造成腐蝕電位的改變。


    The aim of this work was to investigate effects of film thickness on the single layered zirconium oxynitride (Zr(N,O)) films. These films were deposited on AISI 304 stainless steel substrates, at a constant temperature 450℃, by using hollow cathode discharge ion-plating system (HCD-IP) in an argon-oxygen-nitrogen atmosphere. The grain sizes of less than 15 nm show nanocrystalline structure of the films. Regarding to color variations, the intrinsic colorations of Zr(N,O) films were observed, the films are deposited at 0, 2, and 5 sccm O2 flow rate, and the extrinsic colorations of films were observed for deposited condition of 8 sccm O2 flow. Three phases (ZrN, Zr2ON2 and m-ZrO2) in the films could be identified by a modified method developed in this study from XRD and XPS results. The amount of oxide and/or oxynitride phases changed with the different film thickness for the Zr(N,O) films. The structure of Zr(N,O) films became unstable, peak of X-ray diffraction pattern shifting and amorphization, with the different film thickness for the films deposited at 8 sccm O2 flow rate. The increase of hardness with increasing film thickness was observed. The residual stress of Zr(N,O) films was relieved with increasing oxygen flow rate forming oxide in the film, but no specific trends were correlated with the film thickness. The compressive residual stress of stainless steel substrate increased with increasing the thickness of Zr(N,O) film. As compared with film thickness, the packing density of films plays a significant role in corrosion resistance. In potentiodynamic polarization scan, different surface condition of mirror type AISI 304 stainless steel contributed to the different corrosion potential in 5% NaCl solution.

    Contents List of Figures IV List of Tables VIII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Deposition method (HCD-IP) 3 2.2 Characteristics of Zr(N,O) Thin Films 6 2.2.1 ZrN 6 2.2.2 ZrO2 7 2.2.3 ZrNxOy 8 2.2.4 Zr2ON2 9 2.3 Influences of Oxygen Addition on the Characterisitcs of TMeNxOy Thin Films 12 2.4 Effect of Film Thickness on the structure and properties of Thin Films 16 2.5 Corrosion Resistance 17 Chapter 3 Experimental Details 19 3.1 Specimen Preparation and Coating Process 19 3.2 Characterization Methods 22 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 22 3.2.2 XRD and GIXRD 23 3.2.3 Rutherford Backscattering Spectroscopy (RBS) 24 3.2.4 Secondary ion mass spectroscopy (SIMS) 24 3.2.5 Atomic Force Microscopy (AFM) 25 3.3 Phase identification 25 3.4 Properties Measurement 27 3.4.1 Hardness 27 3.4.2 Residual Stress 27 3.4.3 Coloration 29 3.4.4 Wettability 31 3.4.5 Corrosion Resistance 31 3.4.5.1 Potentiodynamic Polarization 31 3.4.5.2 Salt Spray Test 32 Chapter 4 Results 34 4.1 Composition (XPS) 34 4.2 Structure 46 4.2.1 SIMS 46 4.2.2 XRD & GIXRD 46 4.2.3 Phase identification 55 4.2.4 Packing density 59 4.2.5 AFM (Surface Morphology & Roughness) 59 4.3 Properties 64 4.3.1 Coloration Characteristics 64 4.3.2 Hardness 65 4.3.3 Residual Stress 69 4.3.3.1 Residual Stress of Zr(N,O) Thin Films 69 4.3.3.2 Residual Stress of Substrates 69 4.3.4 Wettability 72 4.3.5 Corrosion Resistance 74 4.3.5.1 Potentiodynamic Polarization Scan 74 4.3.5.2 Salt Spray Test 78 Chapter 5 Discussion 83 5.1 Phase Identification 83 5.2 Residual Stress 84 5.2.1 Residual Stress of Zr(N,O) Thin Films 84 5.2.2 Residual Stress of Substrates 85 5.3 Corrosion Resistance 89 5.4 The Influence of Substrate Surface on Coating Process 93 Chapter 6 Conclusions 96 Chapter 7 Reference 97 List of Figures Fig. 2.1 The Hollow Cathode Discharge Ion-Plating (HCD-IP) system. 5 Fig. 2.2 The NaCl crystal structure of a stoichiometric ZrN. 10 Fig. 2.3 The crystal structure of a stoichiometric ZrO2 (a) cubic (b) tetragonal (c) monoclinic [43]. 10 Fig. 2.4 Observed phases in the quasi-binary system ZrO2-Zr3N4 [59]. 11 Fig. 3.1 Schematic of the L*a*b* color space (1976) [89]. 30 Fig. 4.1 Full XPS spectrum for the sample deposited at 5 sccm O2 flow rate during 45 min. 39 Fig. 4.2 The deconvolution spectra of the sample deposited at 0 sccm O2 flow rate during 60 min (a) Zr 3d (b) N 1s (c) O 1s. 40 Fig. 4.3 The deconvolution spectra of the sample deposited at 8 sccm O2 flow rate during 45 min (a) Zr 3d (b) N 1s (c) O 1s. 41 Fig. 4.4 The XPS spectra of Zr 3d for all samples. 42 Fig. 4.5 The XPS spectra of N 1s for all samples 43 Fig. 4.6 The XPS spectra of O 1s for all samples. 44 Fig. 4.7 The elements fraction in at% for Zr, N, and O of Zr(N,O) films deposited at (a) 0 sccm (b) 2 sccm (c) 5 sccm (d) 8 sccm O2 flow rate versus the film thickness. 45 Fig. 4.8 The SIMS depth profile for the sample (a) SS02, (b) SS51 and (c) SS83 48 Fig. 4.9 The XRD patterns of the samples deposited at 0 and 2 sccm O2 flow rate. 49 Fig. 4.10 The XRD patterns of the samples deposited at 5 and 8 sccm O2 flow rate. 50 Fig. 4.11 The spectrum deconvolution pattern of the ample deposited at 8 sccm O2 flow rat during 60 min. 51 Fig. 4.12 The elements fraction in at % for Zr, N, and O of samples versus the film thickness deposited at (a) 0 sccm (b) 2 sccm (c) 5 sccm (d) 8 sccm O2 flow rate by spectrum deconvolution of XRD using ZrN + Zr2ON2 + ZrO2 phases (three phases) 52 Fig. 4.13 The GIXRD patterns of the samples deposited at 0 and 2 sccm O2 flow rate. 53 Fig. 4.14 The GIXRD patterns of the samples deposited at 5 and 8 sccm O2 flow rate. 54 Fig. 4.15 The unsymmetrical peak of ZrN (111) for the deposited film at 8 sccm O2 60 min was decovoluted by peaks of (a) ZrN (111) + Zr2ON2 (222) (b) ZrN (111) + ZrO2 (111) (c) ZrN (111) + Zr2ON2 (222) + ZrO2 (111). 56 Fig. 4.16 The elements fraction in at % for Zr, N, and O of samples versus the film thickness deposited at (a) 0 sccm (b) 2 sccm (c) 5 sccm (d) 8 sccm O2 flow rate by spectrum deconvolution of XRD using ZrN + Zr2ON2 phases (two phases). 57 Fig. 4.17 The elements fraction in at % for Zr, N, and O of samples versus the film thickness deposited at (a) 0 sccm (b) 2 sccm (c) 5 sccm (d) 8 sccm O2 flow rate by spectrum deconvolution of XRD using ZrN + ZrO2 phases (two phases). 58 Fig. 4.18 The variation of packing density versus film thickness of the samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2. 60 Fig. 4.19 The AFM image of the sample deposited at (a) 0 and (b) 2 sccm O2 flow rate during 15 min. 61 Fig. 4.20 The AFM image of the sample deposited at (a) 5 and (b) 8 sccm O2 flow rate during 15 min. 62 Fig. 4.21 The variation of surface roughness versus film thickness for samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2 flow rate. 63 Fig. 4.22 The variation of L* a* b* of color coordinate versus film thickness for samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2. 67 Fig. 4.23 The film hardness versus thickness of the samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2. 68 Fig. 4.24 The variation of H/E ratio versus film thickness of the samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2. 68 Fig. 4.25 The variation of compressive residual stress of (a) ZrN and (b) Zr2ON2 phase versus film thickness. 70 Fig. 4.26 The compressive residual stress of the substrates for pure ZrN samples versus the film thickness. 71 Fig. 4.27 The potentiodynamic polarization curves in 1N H2SO4 + 0.05M KSCN solution for the samples deposited (a) 0 and 2 (b) 5 and 8 sccm O2. 75 Fig. 4.28 The potentiodynamic polarization curve of rough 304SS and polished mirror-like 304SS in 1N H2SO4 + 0.05M KSCN solution. 77 Fig. 4.29 The Icorr versus the film thickness for samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2 in 1N H2SO4 + 0.05M KSCN solution. 77 Fig. 4.30 The potentiodynamic polarization curves in 5% NaCl solution for the samples deposited at (a) 0 and 2 (b) 5 and 8 sccm O2. 79 Fig. 4.31 The potentiodynamic polarization curve of rough 304SS and polished mirror-like 304SS in 5% NaCl solution. 81 Fig. 4.32 The Icorr versus the film thickness for samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2 in 5% NaCl solution. 81 Fig. 5.1 The residual stress of the substrates and the residual stress of ZrN thin films versus the film thickness. 87 Fig. 5.2 The TEM image of the slip steps on 304SS near TiN film [98]. 87 Fig. 5.3 The compressive residual stress of the substrates versus incident angle. 88 Fig. 5.4 The Icorr versus the packing density for samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2 in 1N H2SO4 + 0.05M KSCN solution. 91 Fig. 5.5 The Icorr versus the packing density for samples deposited at (a) 0, (b) 2, (c) 5, and (d) 8 sccm O2 in 5% NaCl solution. 92 Fig. 5.6 The AFM image of polished mirror-like bare 304SS. 95 Fig. 5.7 The potentiodynamic polarization curves in 5% NaCl solution for the failure samples, SS22, SS52, and SS81, after salt spray test. 95 List of Tables Table 3.1 The coating conditions 21 Table 3.2 The experimental conditions of salt spray test. 33 Table 4.1 Summary of deposition conditions, thickness and chemical composition of Zr(N,O) thin films. 36 Table 4.2 Summary of structure parameters of Zr(N,O) thin films. 37 Table 4.3 Summary of properties of Zr(N,O) thin films. 38 Table 4.4 The coloration of Zr(N,O) thin films. 66 Table 4.5 The contact angle of all samples dropped 2□l volume of 5% NaCl. 73 Table 4.6 The experimental results for the potentiodynamic polarization in 1N H2SO4 + 0.05M KSCN solution 76 Table 4.7 The experimental results for the potentiodynamic polarization in 5% NaCl solution. 80 Table 4.8 The salt spray test results of the Zr(N,O)/304SS samples. 82

    [1] U. K. Wiiala, I. M. Penttinen, A. S. Korhonen, Surf. Coat. Technol. 41 (1990) 191.
    [2] L. V. Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol. 53 (1992) 25.
    [3] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films 228 (1993) 233.
    [4] P. C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
    [5] E. Kelesoglu, C. Mitterer, M. K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
    [6] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112 (1999) 133.
    [7] Mehdi H. Kazemeini, Alexander A. Berezin, Nobuhiko Fukuhara, Thin Solid Films 372 (2000) 70.
    [8] N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
    [9] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197.
    [10] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films 447 (2004) 449.
    [11] Bittar, D. Cochrane, S. Caughley, I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223.
    [12] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 200 (2006) 2917.
    [13] B. Zega, Surf. Coat. Technol. 39/40 (1989) 507.
    [14] C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H. Stori, Vaccum 46 (1995) 1281.
    [15] J. M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
    [16] K. H. Chang, “A Study of Nanocrystalline Zr(N,O) Thin Films Deposited by Ion Plating”, Master Thesis, 2005. National Tsing Hua University, R.O.C.
    [17] Z. E. Tsai, “Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film”, Master Thesis, 2005. National Tsing Hua University, R.O.C.
    [18] J. Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films 197, (1991) 117.
    [19] U. C. Oh, J. H. Je, J. Appl. Phys. 74, (1993) 1692.
    [20] J. H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys. 81(9), (1997) 6126.
    [21] W. J. Chou, G. P. Yu, J. H. Huang, Surf. Coat. Technol., 140, (2001) 206.
    [22] F. Y. Ouyang, “Effect of film thickness and Ti interlayer thickness on the structure and properties of nanocrystalline TiN thin film deposited by unbalanced magnetron (UBM) sputtering”, Master Thesis, 2004. National Tsing Hua University, R.O.C.
    [23] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p.562.
    [24] W. J. Chou, G. P. Yu, J. H. Huang, Surf. Coat. Technol. 149, (2002) 7.
    [25] N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol., 142-144 (2001) 615.
    [26] F. Fabreguette, L. Imhoff, M. Maglione, B. Domenichini, M.C.M. Lucas, P.Sibillot, S. Bourgeois, M. Saciolotti, Chem. Vap. Depos. 6 (3) (2000) 615.
    [27] C. Rousselot, N. Martin, Surf. Coat. Technol. 142-144 (2001) 206.
    [28] R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195.
    [29] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 511.
    [30] W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B, 80/81 (1993) 445.
    [31] R. A. Dugdale, J. Mater. Sci., 1(1966) 160.
    [32] W. D. Sproul, Thin Solid Films 107(1983) 141.
    [33] Navrotsky, J. Alloys Compd. 321 (2001) 300.
    [34] S. Ventkartaraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys. 92 (5) (2002) 2461.
    [35] S. Colard, H, Kupfer, W. Hoyer, G. Hecht, Vacuum 55 (1999) 1453.
    [36] J. Musil and J. Wolfe, Mater. Sci. Eng., A 163 (1993) 211.
    [37] J. E. Hove, and W. C. Riley (Eds.), “Modern Ceramic: Some Principles and Concepts”, John Wiley, CA, 1965, p.352.
    [38] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991) 1463.
    [39] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    [40] L. E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188.
    [41] J. H. Huang, K. W. Lau, G. P. Yu, Surf. Coat. Technol. 191 (2005) 17.
    [42] F. Jones, J. Vac. Sci. Technol. A 6 (1988) 3088.
    [43] H. Heuer, M. Ruhle, “Phase Transformation in ZrO2 –Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    [44] Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys., Condens. Mat., 15 (2003) 7707.
    [45] F. Lang, J. Mater. Sci 17 (1982) 247.
    [46] R. Rujkorakan, J. R. Sites, J. Vac. Sci. Technol. A 4 (1986) 568.
    [47] M. G. Krishna, K. Narasimha, S. Mohan, Thin Solid Films, 193 (1990) 690.
    [48] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    [49] X. J. Chen, K. A. Khor, S. H Chan, L. G. Yu, Mater. Sci. Eng. 335 (2002) 246.
    [50] S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R, Jayavel, M. Wuttig, J. Appl. Phys. 92(7) (2002) 3599.
    [51] W. H. Lowdermilk, D. Milam, F. Rainer, Thin Solid Films, 73 (1980) 155.
    [52] W. T. Pawlewicz, D. D. Hays, P. M. Martin, Thin Solid Films, 73 (1980) 169.
    [53] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Thin Solid Films, 469-470 (2004) 11.
    [54] P. Carvalho, A. C. Fernandes, L. Rebouta, F. Vaz, L, Cunha, U. Kreissig, N. P. Barradas, A. R. Ramos, E. Alves, Nucl. Instrum. Methods Phys. Res., Sect. B, 249 (2006) 458.
    [55] P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, O. Banakh, J. Appl. Phys. 98 (2005) 23715/1.
    [56] P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J. P. Riviere, E. Alves, A. Cavaleiro, Surf. Coat. Technol., 200 (2005) 748.
    [57] F. Wells, “Structural Inorganic Chemistry”, 5th ed. Clarendon Press, Oxford, 1984, p257.
    [58] S. J. Clarke, C. W. Michie, M. J. Rosseinsky, J. Solid State Chem. 146 (1999) 399.
    [59] M. Lerch, J. Mater. Sci. Lett. 17 (1998) 441.
    [60] E. Fluglein, R. Hock, M. Lerch, Z. Anorg. Allg. Chem. 623 (1997) 304.
    [61] J. C. Gilles, Bull. Soc. Chim. Fr. 22 (1962) 2118.
    [62] R. Collongues, J. C. Gilles, A. M. Lejus, M. Perez, Y. Jorba, D. Michel, Mater. Res. Bull. 2 (1967) 837.
    [63] S. Bertaux, P. Reynders, J. M. Heintz, M. Lerch, Mater. Sci. Eng., B 121 (2005) 137.
    [64] Y. Makino. M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol. 98 (1998) 934.
    [65] S. H. Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System”, Master Thesis, 2006. National Tsing Hua University, R.O.C.
    [66] S. J. Chiu, “Oxygen Doping on the Structure and Properties of Nanocrystalline Ti(N,O) Thin Film”, Master Thesis, 2006. National Tsing Hua University, R.O.C.
    [67] K. Takizawa, M. Fukushima, K. KuroKawa, H. Okada and H. Imai, Hyomen Gijutsu 42 (1991) 1152.
    [68] H. Uchida, S. Inoue, K. Koterazawa, Mater. Sci. Eng. A 234–236 (1997) 649.
    [69] T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng. 45 (1996) 425.
    [70] T. Kado, R. Makabe, S. Mochizuki, S. Nakajima, M. Araki, Boshoku Gijutsu Corros. Eng. 36 (1987) 551.
    [71] W. L. Pan, G. P. Yu, J. H. Huang, Surf. Coat. Technol. 110, (1998) 111.
    [72] B. F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol. 111 (1999) 16.
    [73] J. Y. Chen, G. P. Yu, J. H. Huang, Mater. Chem. Phys., 65 (2000) 310.
    [74] W. J. Chou, G. P. Yu, J. H. Huang, Corros. Sci., 43 (2001) 2023.
    [75] C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, Master Thesis, 2003. National Tsing Hua University, R.O.C.
    [76] E. Ariza, L.A. Rocha, F. Vazc, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alvese, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469 (2004) 274.
    [77] S. C. Ferreira, E. Ariza, L. A. Rocha, J. R. Gomes, P. Carvalho, F. Vaz, A. C. Fernandes, L. Rebouta, L. Cunha, E. Alves, Ph. Goudeau, J.P. Rivière, Surf. Coat. Technol. 200 (2006) 6634.
    [78] W. J. Chou, C. H. Sun, G.P. Yu, J. H. Huang, Mater. Chem. Phys, 82 (2003) 228.
    [79] W. J. Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, 2003, Ph. D Thesis, National Tsing Hua University, R.O.C.
    [80] G. J. Leggett, J.C Vickerman, Int. J. Mass Spec. Ion Proc., 122 (1992) 281.
    [81] P. Scherrer, Gött. Nachr 2, (1918) 98.
    [82] C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
    [83] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, New Jersey, 2001, p.466.
    [84] K. C. Lan, “Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating”, Master Thesis, 2006. National Tsing Hua University, R.O.C.
    [85] http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum =CCERAF
    [86] W. C. Oliver, G. M. Pharr, J. Mater. Res. 7(6) (1992) 1564.
    [87] CIE, Colorimetry, Tech. Rep., 15, Bureau Central de la CIE, 1971, p.1.
    [88] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Tech. Rept. Supplement No. 2 to CIE publication No. 15, Bureau Central de la CIE, 1978, p.1.
    [89] American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, 1941, p.3.
    [90] Metals Handbook 9th ed., Vol. 13, 1988, ASM INTERNATIONAL, Metals Park, OH, p.212.
    [91] ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350.
    [92] Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. Interface Anal. 24 (1996) 448.
    [93] M. Del Re, R. Gouttebaron, J-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
    [94] S. Robinson, P-M. A. Sherwood, Surf. Interface Anal. 6 (1984) 6.
    [95] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 416.
    [96] C. T. Chen, Y. C. Song, G. P. Yu, and J. H. Huang, J. Mater. Eng. Perform., 7 (3) (1998) 324.
    [97] C. H. Yeh, “Effect of Film thickness on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Ion Plating”, Master Thesis, 2004. National Tsing Hua University, R.O.C.
    [98] M. H. Wang, “Effects of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by Unbalanced Magnetron Sputtering (UBM)”, Master Thesis, 2004. National Tsing Hua University, R.O.C.
    [99] H. Ohmori, K. Katahira, J. Nagata, J. Komotori, CIRP Annals. 51/1 (2002) 491.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE