研究生: |
蕭勝議 Hsiao,Sheng-Yi |
---|---|
論文名稱: |
新型微透鏡點膠成形技術開發及其與微機電製程技術之整合 The Development of a Novel Micro Dispensing Lenses Technology and Its Integration with MEMS Processes |
指導教授: |
方維倫
Fang,Weileun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 點膠透鏡 、製程整合 、微凹透鏡 、液態透鏡成形 |
外文關鍵詞: | dispensing lens, liquid phase formed lens, micro concave lens, process integration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微型光學透鏡在微光學元件中扮演重要的角色,大量研究已經針對凸透鏡進行了相關的討論及技術開發。然而微透鏡研究多數仍侷限在光纖應用上,藉由開發不同形態的透鏡元件,將凸透鏡與其它種類透鏡組合應用,將有助於開發微透鏡元件更多樣化的應用性。在實際應用上,微尺寸透鏡元件在應用時需要精密的組裝定位,除了不便於使用之外,也可能因組裝誤差影響設計品質。本研究從二個方向上去克服透鏡應用上的挑戰,第一,本文成功提出多樣化的透鏡種類及材料,除了具有正屈光度(Diopter power)的凸透鏡之外,本研究亦進行新型微凹透鏡的研發,以提供更多樣化的光學透鏡元件;也因為採用了液態點膠技術,所以將可相容於各類可進行固化操作的液態材料,大量不同的材料皆可以支援此點膠整合技術。第二,在元件整合面,本研究從微透鏡切入,研究新型微透鏡,並利用微機電製程可製作出各式樣不同的厚框架結構,在各個不同的製程平台晶片上成功實現前述微透鏡點膠製作。此外,液態點膠具有在框架結構上自動定位成形的能力,免除了微透鏡應用上組裝定位的需求及其將導致的定位偏差。更進一步地,液態點膠技術屬常溫後製程操作,亦可輕易整合於由各種不同製程平台所製作出來的元件上,包括各樣的微感測器及微致動器,有助於實現微透鏡的系統化的整合應用。總結來說,在元件面看來,新式的微透鏡元件將有助於新應用的發展;而在技術應用方面看來,整合不同的製程平台技術,提供契機,使微透鏡在聚焦之外有更多樣化的應用可能性。
Micro-lenses play important roles in MOEMS. Convex micro-lenses are widely studied, especially for applications in optical fiber related researches. Beside the optical coupling application, it seems that the micro-lenses application is limited. Moreover, the miniature lenses are difficult to handle. As a result, precise position control and assembly are needed. To provide better chance for micro-lenses, the main solution is to develop as many types of micro-optical components as possible so as to create more feasibility. Some problems are solved in this study. A novel concave microlens is proposed and hopefully might lead colleagues to solve the aberration produced by single lens. A simple dispensing technology is compatible with different liquid materials. Moreover, the technology is integrated with various MEMS processes. Thus, with various materials and various integrated platforms, the micro lens is going to find more possibilities. MEMS devices such as sensors, actuators are relatively well-developed comparing with micro lenses. Integrating dispensing lens technology with well-developed MEMS devices can make itself to perform more practical functionality.
[1] K.E. Petersen “Silicon as a mechanical material,” Proceedings of IEEE, vol. 70, No. 5, pp. 420-457, 1982.
[2] Ming C. Wu, “Micromachining for Optical and Optoelectronic Systems,” Proceedings of IEEE, vol. 85, no. 11, pp. 1833-1856, 1997.
[3] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
[4] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
[5] R. S. Muller, and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1705-1720, 1998.
[6] http://www.analog.com/index.html : iMEMS® Accelerometers
[7] http://www.dlp.com : Texas Instruments-Digital Light Process
[8] L. J. Hornbeck, “Current status of the digital micromirror device (DMD) for projection television applications,” Proceedings of IEEE Int. Electron Devices Meeting, Washington, DC, Dec. 1993, pp. 381–384.
[9] L. J. Hornbeck, “Digital Light Processing: A New MEMS-Based Display Technology,” Technical Digest of the IEEJ 14th Sensor Symposium, Kawasaki, Japan, June 1996, pp. 297-304
[10] M. R. Douglass, “Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Device (DMD™),” Proceedings of the 36th Annual International Reliability Physics Symposium, Reno, Nevada, March 1998, pp. 9-16.
[11] A. B. Sontheimer, “Digital Micromirror Device (DMD) Hinge Memory Lifetime Reliability Modeling,” 2002 IEEE International Reliability Physics Symposium, Dallas TX, April 2002, pp.118-121.
[12] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-Space Micromachined Optical Switches for Optical Networking,” IEEE Journal of Select Topics in Quantum Electronics, vol. 5, pp. 4-9, 1999.
[13] http://www.qualcomm.com/products_services/consumer_electronics/displays/mirasol/technology/core.html
[14] http://www.microvision.com/pico_projector_displays/howitworks.html
[15] http://www.techfresh.net/texas-instruments-pico-dlp-projector/
[16] Li Fan, S. Gloeckner, P. D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J. Gritters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu and A. Husain, “Digital MEMS switch for planar photonic crossconnects,” 2002 Optical Fiber Communication (OFC) Conference, Paper TuO-4, Anaheim, California, March 17-24, 2002
[17] http://www.eettaiwan.com/ART_8800499274_480702_NT_816f9ad5.HTM
[18] H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M.-C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technology, Vol. 21, pp.1700-1708, 2003.
[19] M. Straub, L.-H. Nguyen, A. Fazlic et al., “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Optical Materials, Vol. 27, Issue 3, pp.359-364, 2004.
[20] L. Fu, A. Jain, H.-K. Xie, et al., “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Optics Express, Vol.14, Issue 3, pp.1027-1032, 2006.
[21] Y. Fu, N.K.A. Bryan, and O. N. Shing, “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Letters, 12, pp 1213-1215, 2000.
[22] J.S. Leggatt, and M.C. Hutley, “Microlens arrays for interconnection of singlemode fiber arrays,” IEEE Electronics Letters, 27, pp 238-240, 1991.
[23] A. Jain, H.-K. Xie, “Microendoscopic Confocal Imaging Probe Based on an LVD Microlens Scanner,” IEEE JSTQE, Vol.13, Issue 2, pp.228-234, 2007.
[24] K. Aljasem, A. Seifert, H. Zappe, “Tunable multi-micro-lens system for high lateral resolution endoscopic optical coherence tomography,” Optical MEMS and Nanophotonics, 2008 IEEE/LEOS Internationall Conference on, Aug 11-14, 2008, pp.44-45.
[25] T. Dohi, K. Matsumoto, I. Shimoyama “The micro Fabry-Perot interferometer for the spectral endoscope,” IEEE MEMS2005, 2005, pp.830-833.
[26] L.Y. Lin, S.S. Lee, K.S.J. Pister, and M.C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique,” IEEE Electronics Letters, 30, pp 448-449, 1994.
[27] 李家雯,“應用於光學讀寫頭之微聚焦平台,”國立清華大學動力機械工程學系碩士論文,2003.
[28] S. Sinzinger, and J. Jahns, Microoptics. 1st Ed., New York, NY: WILEY-VCH, 1999.
[29] M.C. WU, “Micromachining for optical and optoelectronic systems,” Proceedings of the IEEE, 85, pp 1833-1856, 1997.
[30] K. Itakura, T. Nobusada, N. Kokusenya, R. Nagayoshi, and M. Ozaki, “A 1-mm 50 k-pixel IT CCD image sensor for miniature camera system,” IEEE Trans. Electron Dev., vol. 47, no. 1, pp.65-70, 2000.
[31] F. T. O'Neill, J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” International Journal for Light and Electron Optics, Vol. 113, No.9, pp391-404, 2002
[32] P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photonics Letters, 9, pp 1367-1369, 1997.
[33] H.S. Alhokail, “Fabrication of photoresist microlens arrays,” Proceedings of the Microelectronics International Conference, pp 49-52, 1998.
[34] J. Yao, et al., “Refractive micro lens array made of dichromate gelatin with gray-tone photolithography,” Microelectronic Engineering, Vol. 57-58, September 2001, Pages 729-735.
[35] J. Shimada, O. Ohguchi, and R. Sawada, ”Microlens fabricated by the planar process,” Journal of Lightwave Technology, 9, pp 571-576, 1991.
[36] Jin-Wan Jeon , Jun-Bo Yoon, Koeng Su Lim, “Sloping profile and pattern transfer to silicon by shape-controllable 3-D lithography and ICP,” Sensors and Actuators A, Vol.139, pp.281-286, 2007.
[37] P. Savander, “Microlens arrays etched into glass and silicon,” Opt.Lasers Eng., vol. 20, pp. 97-107, 1994.
[38] D.A. Fletcher, K.B. Crozier, K.W. Guarini, S.C. Minne, G.S. Kino, C.F. Quate, K.E. Goodson, “Microfabricated silicon solid immersion lens,” J. Microelectromech. Syst., Vol. 10, pp.450–459, 2001.
[39] Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photonics Letters, Vol.12, pp 507-509, 2000.
[40] C.S. Lee, and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, 88, pp 87-90, 2001.
[41] J. Hsieh, C.-j. Wen, H.-H. Lin, H.-L. Lin, Y.C. Hu, H.-Y. Chou, C.-F. Lai, W. Fang, “The study on SU-8 micro cylindrical lens for laser induced fluorescent application,” Proceedings of Optical MEMS Conference, Aug, 2003, pp 65-66.
[42] N.E.S. Farrington, and S. Iezekiel, “Investigations into the use of SU-8 in the fabrication of a micro-optical bench for hybrid optoelectronic integration and packaging,” IEEE High Frequency Postgraduate Student Colloquium, September, 2001, pp 164-167.
[43] S.-K. Lee, K.-C. Lee, and S.S. Lee, “Microlens fabrication by the modified LIGA process,” Proceedings of IEEE MEME’02, Las Vegas, Nevada, January, 2002, pp 544-547.
[44] S.K. Lee, D.S. Kim, S.S. Yang, S.S. Lee, and T.H. Kwon, “Microlens fabrication by the modified LIGA process and its modeling and analysis,” Proceedings of Optical MEMS Conference, Aug, 2002, pp 77-78.
[45] H.S. Lee, S.-K. Lee, T. H. Kown, and S.S. Lee, “Microlenses array fabrication by hot embossing process,” Proceedings of Optical MEMS Conference, Aug, 2002, pp 73-74.
[46] D.L. MacFarlane, V. Narayan, J.A. Tatum, W.R. Cox, T. Chen, and D.J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Letters, 6, pp 1112-1114, 1994.
[47] 強玲英, 楊啟榮,“點膠滴置法製作折射式微透鏡陣列及其複製性之研究,”第十七屆機械工程研討會, 高雄, 民國89年12月, 第369至375頁.
[48] K.-H. Jeong, and L. P. Lee, “A new method of increasing numerical aperture of microlens for biophotonic MEMS,” Proceedings of Annual International IEEE-EMBS Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, pp 380-383.
[49] H. Choo, and R.S. Muller, “Optical properties of microlenses fabricated using hydrophobic effects and polymer jet printing technology,” Proceedings of Optical MEMS Conference, Aug, 2003, pp 169-170.
[50] E.-H. Park, M.-J. Kim, and Y.-S. Kwon, “New fabrication technology of convex and concave microlens using UV curing method,” LEOS99 Annual Meeting, WDD: new waveguide and Interconnect technology session, 1999, pp 639-640.
[51] E.-H. Park, M.-J. Kim, and Y.-S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photonics Letters, 11, pp 439-441, 1999.
[52] S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, Vol. 85, No. 7, pp.1128-1130, 2004.
[53] http://www.varioptic.com/
[54] Chih-Cheng Cheng, C. Alex Chang, and J. Andrew Yeh, “Variable focus dielectric liquid droplet lens,” Optics Express, Vol. 14, Issue 9, pp. 4101-4106, 2006.
[55] W. H. Hsieh and J. H. Chen, “Lens Profile Control by Electrowetting Fabrication Technique,” IEEE Photonics Technology Letters, vol. 17, pp. 606~608, 2005.
[56] C. W. Chen and F. G. Tseng, “Tunable Micro-Aspherical Lens Manipulated by 2D Electrostatic Forces,” TRANSDUCERS '05., vol. 1, pp. 376~379, 2005.
[57] K. Y. Hung, T. H. Liang, F. G. Tseng, and C. T. Chen, “Modify 2D Gradient-Electrostatic-Forces to Manipulate Micro-Aspherical Lens for Small Form Factor DVD Pickup Head,” TRANSDUCERS '07, pp.2569-2572, 2007.
[58] J. Hsieh, S.-Y. Hsiao, C.-F. Lai, and W. Fang, “Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench” J. Micromech. Microeng., Vol. 17, No. 8, pp. 1703-1709, 2007
[59] V. Milanović, “Multilevel-Beam SOI-MEMS Fabrication and Applications,” Journal of Microelectromechanical Systems, vol. 13, no. 1, pp. 19-30, 2004.
[60] V. Milanovic, M. Last, and K.S.J. Pister, “Torsional micromirrors with lateral actuators,” Transducers ’01, Munich, Germany, June 2001, pp.1298-1301.
[61] S. Kwon, V. Milanović, L. P. Lee, “A High Aspect Ratio 2D Gimbaled Microscanner with Large Static Rotation,” IEEE/LEOS Optical MEMS 2002, Lugano, Switzerland, Aug. 2002.
[62] H. Schenk, P. Durr, D. Kunze, H. Lakner, and H. Kuck, “An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes,” IEEE 13th Annual International Conference on Micro Electro Mechanical Systems, 2000, Miyazaki, Japan, pp. 473-478.
[63] H. Schenk, P. Durr, D. Kunze, H. Lakner, and H. Kuck, “A resonantly excited 2D micro-scanning-mirror with large deflection,” Sensors and Actuators A (Physical), vol. 89, pp. 104-111, 2001.
[64] T. J. Brosnihan, S. A. Brown, A. Brogan, C. S. Gormley, D. J. Collins, S. J. Sherman, M. Lemkin, N. A. Polce, and M. S. Davis, “Optical IMEMS ® – A Fabrication Process for MEMS Optical Switches with Integrated On-Chip Electronics,” Transducers’03, Boston, MA, June 2003, pp.1638-1642.
[65] T. Juneau, K. Unterkofler, T. Seliverstov, S. Zhang, and M. Judy, “Dual-Axis Optical Mirror Positioning Using A Nonlinear Closed-Loop Controller,” Transducers’03, Boston, MA, June 2003, pp.560-563.
[66] http://www.memscap.com/ : MEMSCAP- PolyMUMP’s
[67] K.A. Shaw, Z.L. Zhang, N.C MacDonald, “SCREAM I: A single mask, single-crystal silicon process for microelectromechanical structures,” Proceedings 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. IEEE, pp. 155-160, 1993.
[68] K.A. Shaw, N.C MacDonald, “Planarity of large MEMS,” J. MEMS, vol. 5, pp. 79-97, 1996
[69] K.A. Shaw, Z.L. Zhang, N.C MacDonald, “Integrating SCREAM micromachined devices with integrated circuits,” Proceedings 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. IEEE, pp. 44-48, 1996.
[70] F. Ayazi and K. Najafi, “High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology,” J. Microelectromechanical Systems., vol. 9, pp. 288-294, 2000.
[71] R. Abdolvand, H. Johari, G. K. Ho, A. Erbil, F. Ayazi, “Quality Factor in Trench-Refilled Polysilicon Beam Resonators,” J MEMS, vol.15, pp. 471-478, 2006.
[72] C. Keller and M. Ferrari, “Milli-scale polysilicon structures,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 1994, pp. 132–137.
[73] C. G. Keller and R. T. Howe, “HexSil Tweezers for Teleoperated Micro-Assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77
[74] C. G. Keller and R. T. Howe, “Nickel-filled Hexsil Thermally Actuated Tweezers,” Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers '95. The 8th International Conference on, pp. 376-379, 1995
[75] M. Wu, and W. Fang, “The molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (111) Si for MOEMS” Journal of Micromechanics and Microengineering, Vol. 16, pp. 260-265, 2006.
[76] M. Wu, C.-Y. Peng, S.-Y. Hsiao, H.-Yi Lin, and W. Fang, “Integrated tracking and focusing systems in a monolithic device for MEMS optical pick-up head,” Journal of Optics A - Pure and Applied Optics. 2005.
[77] R.R.A. Syms, “Equilibrium of hinged and hingeless structures rotated using surface tension forces,” Journal of Microelectromechanical Systems, 4, pp 177-183, 1995.
[78] R.R.A. Syms, “Self-assembly of three dimensional microstructures using rotation by surface tension forces,” IEEE Electronics Letters, 29, pp 662-664, 1993.
[79] F.K. Hansen, “Surface tension by image analysis: fast and automatic measurements of pendant and sessile drops and bubbles,” Journal of Colloid and Interface Science, 160, pp 209-217, 1993.
[80] Y. Gu, and D. Li, “A model for a liquid drop spreading on a solid surface,” Colloids and Surfaces A, 142, pp 243-256, 1998.
[81] B. Zhang, and A. Nakajima, “Nanometer deformation caused by the laplace pressure and the possibility of its effect on surface tension measurements,” Journal of Collide and Interface Science, 211, pp 114-121, 1999.
[82] E. Hecht, Optics. 3rd, Wesley, 1998.
[83] C Wang, S.-Y. Lee, C.-M. Sun, M.-H. Tsai, W. Fang, “Implementation of CMOS-MEMS compound lens,” the IEEE/LEOS Optical MEMS 2007, Taiwan, Aug. 2007, pp.143-144.
[84] J. Hsieh, S.-Y. Hsiao, H.-L. Yin, W.-C. Chen, C.-J. Weng, Y.-H. Lin, W. Fang, and K.-W. Shieh, “An In-plane Dispersive System Utilizing Micro Tunable Vertical Grating,” the IEEE/LEOS Optical MEMS 2005, Oulu, Finland, Aug. 2005, pp.97-98.
[85] A. B. Yu, X. M. Zhang, H. Cai, Q. X. Zhang and A. Q. Liu, “Rhombic-Shaped thermal actuator array for evenly-distributed very large displacement,” MEMS2007, Jan. 2007, pp.663-666.
[86] Y.B. Gianchandani, and K. Najafi, “Bent-beam strain sensors,” Journal of Microelectromechanical Systems, 5, pp 52-58, 1996.
[87] L. Que, J.S. Park, and Y.B. Gianchandani, “Bent-beam electro-termal actuators for high force applications,” IEEE MEMS’99, January, 1999, pp 31-36.
[88] http://www.canon.com/camera-museum/tech/room/f_tebure.html
[89] http://imaging.nikon.com/products/imaging/technology/vr/index.htm
[90] http://www.pentaximaging.com/footer/news_media_article?ArticleId=7717552
[91] http://www.largan.com.tw
[92] http://www.asia-optical.com/