簡易檢索 / 詳目顯示

研究生: 李柏南
Li, Po-Nan
論文名稱: 在優化設計的奈米金屬叢集中實現可選擇的侷限表面電漿激發態
Selective excitations of localized surface plasmons in designed nanostructures
指導教授: 黃承彬
Huang, Chen-Bin
口試委員: 林鶴南
Lin, Heh-Nan
李佳翰
Li, Jia-Han
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: 奈米電漿子表面電漿偏振態近場量測
外文關鍵詞: Plasmonics, Surface plasmons, Polarization, Near-field measurement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出並以實驗驗證一可選擇性激發侷限表面電漿激發態之奈米金屬叢集結構,且為世界上首度能在近場光範圍內產生高達十種可選擇的激發態;另一方面,此叢集結構尚可用以分析近場光訊號之偏振態,並能進一步判讀圓偏振態之旋光性。
    本研究包含數值模擬與分析、奈米元件製程,以及光學量測實驗等三部份,將在各章節分別詳細論述。本論文藉由數值模擬發現,在由奈米金屬球或奈米金屬圓柱所構成的叢集結構之中,吾人可藉由控制激發光源的偏振態,產生至多十種不同的表面電漿激發態;而這樣的選擇性激發亦可在具有類似排列的奈米孔洞結構之中實現。
    上述提出的叢集結構經由優化設計後,吾人使用聚焦離子術系統,在熱蒸鍍之黃金薄膜上進行奈米磨銑,藉以製作元件樣品。量測部份,吾人結合商用之近場光學掃描顯微鏡及自行搭設之光學系統,量測在不同偏振態的激發下,樣品表面之奈米電漿近場光學訊號,並與數值模擬結果比較之。實驗證實本論文之優化叢集結構,可以藉由激發光源偏振態之改變,產生多種表面電漿激發態,且尚可藉以區分圓偏振態之旋光性。


    We propose and experimentally demonstrate several nano-devices which are able to selectively excite optical fields using surface plasmons within the designed structures. It was the first time to our best knowledge that up to ten selective states could be excited in the near-field. On the other hand, the device is also capable of analyzing the polarization state in the near-field, especially the handedness of circular polarizations. Numerical analysis, device fabrication and optical measurement are all covered in this work.
    Numerical experiments suggest that up to ten selective localized surface plasmon states can be generated using excitation with different polarization states, in a device consisting of seven gold nanospheres or nanodisks. This capability can be also reproduced using a designed structure with several nano-holes on a gold film.
    The proposed device was fabricated using a common process involving thermally evaporated gold film and focused ion-beam milling. Optical measurements were performed with a homemade optical measurement system, which include a near-field scanning optical microscope and polarization controlling optics. Selective excitations of localized surface plasmons were experimentally verified, and shown to be capable of distinguishing the handedness of circular polarizations.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii CHAPTER 1 INTRODUCTION 1 Basics of plasmonics 1 Optical manipulation and polarization control 2 Studies on designed cluster of nanoparticles 3 Selective excitations in designed nanocluster 3 CHAPTER 2 NUMERICAL ANALYSIS 5 2.1 Simulation methods 5 2.1.1 Finite-difference time-domain 5 2.1.2 MEEP package 6 2.1.3 Dielectric function 7 2.2 Selective excitations in cluster of nanospheres 8 2.2.1 Design and method 8 2.2.2 Polarization of excitation 10 2.2.3 Design principle 11 2.2.4 Linearly-polarized excitation 12 2.2.5 Circularly-polarized excitation 14 2.2.6 Elliptically-polarized excitation 16 2.2.7 Partially polarized and unpolarized excitation 18 2.3 Selective excitations in nanodisks 20 2.3.1 Design and method 20 2.3.2 Linearly polarized excitations 21 2.3.3 Circularly polarized excitations 22 2.3.4 Elliptically polarized excitations 23 2.4 Selective excitations in nanohole array 24 2.4.1 13-hole cluster 25 2.4.2 9-hole linear cluster 26 2.4.3 Excitations of circular polarizations 27 2.4.4 Excitations of linear polarizations 28 CHAPTER 3 DEVICE FABRICTIONS 30 3.1 Thin film fabrication 31 3.2 Focused ion beam milling 32 3.3 Fabrication process 32 3.4 SEM images 33 3.4.1 13-hole nanocluster 33 3.4.2 linear nanocluster 34 CHAPTER 4 OPTICAL MEASUREMENTS 35 4.1 Methods 35 4.1.1 Near-field scanning optical microscopy 35 4.1.2 Experiment set-up 36 4.1.3 Optics of polarization control 38 4.1.4 Measurement steps 39 4.2 Measurement results 41 4.2.1 Circularly polarized excitations 41 4.2.2 Linearly polarized excitations 44 CHAPTER 5 CONCLUSIONS AND PERSPECTIVE 48 REFERENCES 49 APPENDIXES 52 A.1 Dielectric functions for MEEP 52 A.2 Numerical synthesis 56 A.3 Partial polarization 58 A.4 Near-to-far-field transformation 60

    1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    2. R. H. Ritchie, "PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS," Physical Review 106, 874-881 (1957).
    3. H. A. Atwater, "The promise of plasmonics," Scientific American 296, 56-63 (2007).
    4. D. K. Gramotnev, and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics 4, 83-91 (2010).
    5. M. Stockman, S. Faleev, and D. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
    6. M. Sukharev, and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano Letters 6, 715-719 (2006).
    7. P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, "Analytic coherent control of plasmon propagation in nanostructures," Optics Express 17, 14235-14259 (2009).
    8. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
    9. R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. Van Hulst, and L. Kuipers, "Reversible polarization control of single photon emission," Nano Letters 8, 606-610 (2008).
    10. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, "Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna," Science 329, 930-933 (2010).
    11. P. Biagioni, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, "Cross Resonant Optical Antenna," Physical Review Letters 102, 4 (2009).
    12. P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, "Near-field polarization shaping by a near-resonant plasmonic cross antenna," Physical Review B 80, 4 (2009).
    13. T. Harada, K. Matsuishi, Y. Oishi, K. Isobe, A. Suda, H. Kawan, H. Mizuno, A. Miyawaki, K. Midorikawa, and F. Kannari, "Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores," Optics Express 19, 13618-13627 (2011).
    14. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, "Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens," Nano Letters 10, 529-536 (2010).
    15. W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, "Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer," Nano Letters 10, 2075-2079 (2010).
    16. S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Optics Letters 34, 3047-3049 (2009).
    17. W. L. Huang, H. H. Tsao, C. B. Huang, and Ieee, "Shaping the Optical Near-Field Vortex Distribution in a Plasmonic Spiral," 2011 Ieee Photonics Conference (Pho), 179-180 (2011).
    18. N. J. Halas, "Plasmonics: An Emerging Field Fostered by Nano Letters," Nano Letters 10, 3816-3822 (2010).
    19. M. Hentschel, M. Schaeferling, T. Weiss, N. Liu, and H. Giessen, "Three-Dimensional Chiral Plasmonic Oligomers," Nano Letters 12, 2542-2547 (2012).
    20. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, "Genetically Engineered Plasmonic Nanoarrays," Nano Letters 12, 2037-2044 (2012).
    21. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, "Subgroup Decomposition of Plasmonic Resonances in Hybrid Oligomers: Modeling the Resonance Lineshape," Nano Letters 12, 2101-2106 (2012).
    22. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, "Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS," Nano Letters 12, 1660-1667 (2012).
    23. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmueller, P. Nordlander, and N. J. Halas, "Magnetic Plasmon Formation and Propagation in Artificial Aromatic Molecules," Nano Letters 12, 364-369 (2012).
    24. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, "Manipulating Magnetic Plasmon Propagation in Metallic Nanocluster Networks," ACS Nano 6, 5482–5488 (2012).
    25. P. N. Li, H. H. Tsao, C. B. Huang, and Ieee, "Multiple Selective Excitations of Localized Surface Plasmons in Coupled Gold Nano-Spheres," 2011 Conference on Lasers and Electro-Optics (Cleo) (2011).
    26. P. N. Li, H. H. Tsao, J. S. Huang, and C. B. Huang, "Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis," Optics Letters 36, 2339-2341 (2011).
    27. P. N. Li, H. H. Tsao, C. B. Huang, and Ieee, "A Plasmonic Nanocluster Designed for Near-Field Polarization Analysis," 2011 Ieee Photonics Conference (Pho), 181-182 (2011).
    28. E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," Journal of the Optical Society of America B-Optical Physics 20, 1927-1931 (2003).
    29. B. M. Maoz, A. Ben Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, "Chiroptical Effects in Planar Achiral Plasmonic Oriented Nanohole Arrays," Nano Letters 12, 2357-2361 (2012).
    30. A. Taflove, and S. Hugness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, 2005).
    31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Comput. Phys. Commun. 181, 687-702 (2010).
    32. P. B. Johnson, and R. W. Christy, "OPTICAL-CONSTANTS OF NOBLE-METALS," Physical Review B 6, 4370-4379 (1972).
    33. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
    34. R. C. Weast, CRC handbook of chemistry and physics (CRC Press, Boca Raton, Fa, 1989).
    35. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37, 5271-5283 (1998).
    36. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters 81, 1714-1716 (2002).
    37. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Physical Review B 65 (2002).
    38. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Physical Review B 67, 5 (2003).
    39. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, "Designing coupled-resonator optical waveguide delay lines," Journal of the Optical Society of America B-Optical Physics 21, 1665-1673 (2004).
    40. J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, "Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry," Nature Communications 1, 8 (2010).
    41. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photonics 1, 463-467 (2007).
    42. C.-C. Chen, I.-C. Hsieh, S.-D. Yang, and C.-B. Huang, "Polarization spectral line-by-line pulse shaping," in 2011 Conference on Lasers and Electro-Optics (Cleo)(San Jose, CA, 2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE