簡易檢索 / 詳目顯示

研究生: 黃弘景
Hung-Ching Huang
論文名稱: 混合式遺傳演算法求解大型零壹多限制式背包問題
A hybrid genetic algorithm for the large-scale 0-1 multidimensional knapsack problem
指導教授: 陳茂生
Maw-Sheng Chern
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 148
中文關鍵詞: 零壹多限制式背包問題遺傳演算法
外文關鍵詞: 0-1 Multidimensional Knapsack Problem, Genetic Algorithms
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究所探討的問題為零壹多限制式背包問題(0-1 multidimensional knapsack problem),其為一基於多限制式下找尋價值最高之物件組合的最佳化問題。此問題為NP-hard,隨著問題維度增加,以最佳解演算法(Exact algorithm)求解的所需時間將急速上升。然而,現實生活中時常出現大型零壹多限制式背包問題,因此發展一個具效率且能獲得近似最佳解的演算法是有其必要性的。
    此研究中,我們利用一混合式遺傳演算法求解大型零壹多限制式背包問題。在求解前,我們固定問題中部分的變數使其為零或壹。接著我們設計一遺傳演算法求解縮減後的問題,此遺傳演算法由多個混合式運算子所構成,其可使得搜尋更加有智慧與有彈性。
    為驗證所提出演算法的有效性,我們首先在兩個著名的問題集上進行計算研究。接著我們基於文獻上所建議的方法產生數組大型零壹多限制式背包問題進行測試。計算結果顯示:(1)本研究所提出之演算法優於過去求解零壹多限制式背包問題的遺傳演算法。(2)本研究所提出之變數縮減程序有助於Chu與Raidl的遺傳演算法獲得較佳的解品質。(3)本研究所提出之演算法亦優於已使用變數縮減程序之Chu與Raidl的遺傳演算法。


    The 0-1 multidimensional knapsack problem (0-1 MKP) is the problem of finding a subset of items that yields maximum profit under several knapsack constraints. It belongs to the class of NP-hard problems. When the dimension increases, the computing time needed for exact methods increase rapidly. However, problems of high dimensionality often arise in the modeling of real-world applications, so we need to develop computationally efficient methods for approaching the optimums of them. Genetic algorithms (GAs) are intelligent and probabilistic search algorithm established upon the principles of natural evolution. They have been shown to be able to find good and fast solutions for hard optimization problems.
    In this study, we propose a hybrid GA for the large-scale 0-1 MKP. Unlike the past GAs for the 0-1 MKP, we fix a large portion of variables to be 0 or 1 before applying GAs. Then we design a GA for solving the reduced 0-1 MKP (with less variables). The proposed GA is made up of several hybrid operators which are used to make the search more flexible and intelligent.
    Computational study is conducted on the medium-scale problem sets taken from literature. We also test the proposed GA on several sets of randomly generated large-scale problems (with up to 10000 variables and 1000 constraints). Computational results show that: (1) The proposed GA is superior to all the GAs so-far designed for the 0-1 MKP. (2) The GAs proposed by Chu and Raidl respectively can also be improved significantly in solution quality and computing time if the proposed variable reduction procedure is incorporated into their algorithms. (3) The proposed GA also outperforms Chu and Raidl GAs in which the proposed variable reduction procedure is incorporated.

    Abstract i List of Tables iv List of Figures vi Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Framework of this thesis 8 Chapter 2 Literature Review 9 2.1 Exact algorithms 9 2.2 Heuristic algorithms 10 2.2.1 Greedy heuristics 10 2.2.2 Linear programming based heuristics 13 2.3 Metaheuristics 14 2.3.1 Tabu search based metaheuristics 14 2.3.2 Genetic algorithms based metaheuristics 15 2.3.3 Other metaheuristics 17 Chapter 3 A Hybrid Genetic Algorithm 19 3.1 Foundations of genetic algorithms 19 3.2 Genetic algorithms for the 0-1 MKP 21 3.3 Variable reduction procedure 23 3.3.1 Genetic algorithms used to generate mature solutions 23 3.3.2 Test problems and termination criterion 50 3.3.3 An observation of the mature solutions 54 3.3.4 The variable reduction procedure 65 3.4 A genetic algorithm for the reduced 0-1 MKP 68 3.4.1 Chromosome representation 68 3.4.2 Fitness function 69 3.4.3 Initial population 70 3.4.4 Genetic operator 82 3.4.5 Repairing operator 90 3.4.7 Evolution operator 96 3.4.8 Outline of the proposed genetic algorithm 100 3.4.9 Parameters setting 109 Chapter 4 Computational Results 114 4.1 Outline of the genetic algorithms 114 4.2 Performance indexes 116 4.3 Results for medium-scale problems from literature 117 4.3.1 Medium-scale problems from OR-Library 117 4.3.2 Medium-scale problems from Hearin center for enterprise science 124 4.4 Results for randomly generated large-scale problems 128 4.4.1 Results for the problem sets with different n 129 4.4.2 Results for the problem sets with different m 132 4.4.3 Results for the problem sets with different α 135 4.4.4 Results for the problem sets with different β 139 4.5 Discussion of the computational results 142 Chapter 5 Conclusions and Further Research 143 References 145

    [Alaya 2004] Alaya, I., C. Solnon, and K. Ghedira. (2004). “Ant algorithm for the multi-dimensional knapsack problem,” In B. Filipic and J. Silc (eds.), Bioinspired Optimization Methods and their Applications, Jozef Stefan Institute, Ljubljana, 63-72.
    [Balas 1980] Balas, E. and C.H. Martin. (1980). “Pivot and complement-a heuristic for 0-1 programming,” Management Sciences 26, 86–96.
    [Beasl 1990] Beasley, J.E. (1990). “OR-library: Distributed test problems by electronic mail,” Journal of the Operational Research Society 41, 1069–1072 (OR-Library is available at WWW address http://people.brunel.ac.uk/~mastjjb/jeb/info.html).
    [Chu 1998] Chu, P. and J. Beasley. (1998). “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics 4, 63–86.
    [Drexe 1988] Drexel, A. (1988). “A simulated annealing approach to the multiconstraint zero-one knapsack problem,” Computing 40, 1-8.
    [Eilon 1971] Eilon, S., C.G. Watson, and N. Christofides. (1971). Distribution management: mathematical modeling and practical analysis, Hafner, New York.
    [Frevi 2004] Freville, A. (2004). “The multidimensional 0-1 knapsack problem: An overview,” European Journal of Operational Research 155, 1-21.
    [Frevi 2005] Freville, A. and S. Hanafi. (2005). “The multidimensional 0-1 knapsack problem- bounds and computational aspects,” Annals of Operations Research 139, 195-227.
    [Gavis 1985] Gavish, B. and H. Pirkul. (1985). “Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality,” Mathematical Programming 31, 78-105.

    [Garey 1979] Garey, M.D. and D.S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco.
    [Goldb 1989] Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine learning, Addison-Wesley, New York.
    [Gen 1997] Gen, M. and Cheng, R. (1997). Genetic algorithms and engineering design, Wiley, New York.
    [Glove 1996] Glover, F. and G.A. Kochenberger. (1996). “Critical event tabu search for multidimensional knapsack problems,” In I.H. Osman and J.P. Kelly (eds.), Meta-heuristics: Theory and Applications, Kluwer Academic, Boston, 407–427 (Hearin Center for Enterprise Science is available at http://hces.bus.olemiss.edu/).
    [Glove 1997] Glover, F. and M. Laguna. (1997). Tabu Search, Kluwer Academic, Boston.
    [Gottl 1999] Gottlieb, J. (1999). “On the effectivity of evolutionary algorithms for multidimensional knapsack problem,” In C. Fonlupt., J.K. Hao., E. Lutton., M.A. Ronald., and M. Schoenauer (eds.), Artificial Evolution, Springer, New York, 23-37.
    [Gottl 2000] Gottlieb, J. (2000). “Permutation-based evolutionary algorithms for multidimensional knapsack problems,” In J. Carroll., E. Damiani., H. Haddad., and D. Oppenheim (eds.), ACM symposium on Applied Computing 2002, ACM Press, New York, 408-414.
    [Gottl 2001] Gottlieb, J. (2001). “On the feasibility problem of penalty-based evolutionary algorithms for knapsack problems,” In E.J.W. Boers et al. (eds.), EvoWorkshop 2001, Springer, Berlin, 50-59.
    [Hilli 1969] Hillier, F.S. (1969). “Efficient heuristic procedures for integer linear programming with an interior,” Operations Research 17, 600-637.
    [Holla 1975] Holland, J. (1975). Adaptation in natural and artificial systems, University of Michigan, Ann Arbor.

    [Hinte 1994] Hinterding, R. (1994). “Mapping, order-independent genes and the knapsack problem,” In D. Schaffer., H.P. Schwefel., and D.B. Fogel (eds.), Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Press, New York, 13-17.
    [Hanaf 1998] Hanafi, S. and A. Freville. (1998). “An efficient tabu search approach for the 0-1 multidimensional knapsack problem,” European Journal of Operational Research 106, 659–675.
    [Haul 1998] Haul, C. and S. Voss. (1998). “Using surrogate constraints in genetic algorithms for solving multidimensional knapsack problems,” In D.L. Woodruff (eds.), Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search, Kluwer Academic, Boston, 235–251.
    [Hinte 1999] Hinterding, R. (1999). “Representation, constraint satisfaction and the knapsack problem,” In Angeline et al. (eds.), Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Press, New York, 1286-1292.
    [Koche 1974] Kochenberger, G., G. McCarl, and F. Wyman. (1974). “A heuristic for general integer programming,” Decision Sciences 5, 36–44.
    [Khuri 1994] Khuri, S., T. Back, and J. Heitkotter. (1994). “The zero/one multiple knapsack problem and genetic algorithms,” In Proceedings of the 1994 ACM Symposium on Applied Computing, ACM Press, New York, 188–193.
    [Kelle 2004] Kellerger, H., U. Pferschy, and D. Pisinger. (2004). Knapsack problems, Springer, New York.
    [Loulo 1979] Loulou, R. and E. Michaelides. (1979). “New greedy-like heuristics for multidimensional knapsack problem,” Operations Research 27, 1101-1114.
    [Lin 1998] Lin, Y. H. Edward. (1998). “A bibliographical survey on some well-known non-standard knapsack problems,” Information Systems and Operations Research 36, 274-317.

    [Legui 1999] Leguizamoon, G. and Z. Michalewicz. (1999). “A new version of ant system for subset problems,” In Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Press, New York, 1478-1484.
    [McMil 1973] McMillan, C. and D.R. Plaine. (1973). “Resource allocation via 0-1 programming,” Decision Science 4, 119-132.
    [Magaz 1984] Magazine, M.J. and O. Oguz. (1984). “A heuristic algorithm for the multidimensional zero-one knapsack problem,” European Journal of Operational Research 16, 319-326.
    [Marte 1990] Martello, S. and P. Toth. (1990). Knapsack problems: algorithms and computer implementations, Wiley & Sons, Chichester.
    [Morag 2005] Moraga, R.J., G.W. Depuy, and G.E. Whitehouse. (2005). “Meta-RaPS approach for 0-1 multidimensional knapsack problem,” Computers & Industrial Engineering 48, 83-96.
    [Osori 2002] Osorio, M. A., F. Glover, and P. Hammer. (2002). “Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions,” Annals of Operations Research 117, 71-93.
    [Pirku 1987] Pirkul, H. (1987). “A heuristic solution procedure for the multiconstraint zero-one knapsack problem,” Naval Research Logistics 34, 161–172.
    [Raidl 1998] Raidl G.R. (1998). “An improved genetic algorithm for the multiconstraint knapsack problem,” In Proceedings of the 5th IEEE International Conference on Evolutionary Computation, IEEE Press, New York, 207–211.
    [Raidl 1999] Raidl G.R. (1999). “Weight-codings in a genetic algorithm for the multi-constraint knapsack problem,” In Proceedings of the 1999 IEEE Congress on Evolutionary Computation, IEEE Press, New York, 596-603.

    [Raidl 2005] Raidl G.R. and J. Gottlieb. (2005). “Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem,” Evolutionary Computation 13, 441-475.
    [Senju 1968] Senju, S. and Y. Toyoda. (1968). “An approach to linear programming with 0-1 variables,” Management Science 15, 196-207.
    [Shih 1979] Shih, W. (1979). “A branch and bound method for the multidimensional zero-one knapsack problem,” Journal of the Operational Research Society 30, 369-378.
    [Toyod 1975] Toyoda, Y. (1975). “A simplified algorithm for obtaining approximate solutions to zero-one programming problems,” Management Sciences 21, 1417–1427.
    [Thiel 1994] Thiel, J. and S. Voss. (1994). “Some experiences on solving multiconstraint zero-one knapsack problems with genetic algorithms,” INFOR 32, 226–242.
    [Uyar 2005] Uyar, S. and G. Eryigit. (2005). “Improvements to penalty-based evolutionary algorithms for the multi-dimensional knapsack problem using a gene-based adaptive mutation approach,” In Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM Press, New York, 1257-1264.
    [Volge 1990] Volgenant, A. and J.A. Zoon. (1990). “An improved heuristic for the multidimensional 0-1 knapsack problem,” Journal of the Operational Research Society 41, 963-970.
    [Vasqu 2001] Vasquez, M. (2001). “An hybrid approach for the 0-1 multi knapsack problem,” In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Seattle, 328-333.
    [Vasqu 2005] Vasquez, M. and Y. Vimont. (2005). “Improved results on the 0-1 multidimensional knapsack problem,” European Journal of Operational Research 165, 70-81.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE