簡易檢索 / 詳目顯示

研究生: 李翊僑
論文名稱: 製程參數最佳設定之研究-以多元對數常態分配為例
Optimization of process parameters setting research -A case study of lognormal distribution
指導教授: 張延彰
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2014
畢業學年度: 103
語文別: 中文
中文關鍵詞: 最佳化製程參數對數常態
外文關鍵詞: Optimization, Process parameters, lognormal distribution
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生產過程中設置於一定條件的最佳製程參數可以了解產品的利潤,是為最重要的其中一環;每個品質特徵均有一理想目標值,在Chang et.al(2009)的文章中,我們討論某個品質特徵為”越大越好”時,最佳解仍存在的條件,為方便論本文以多變量對數常態分配為品質特徵的基本假設。


    Optimum process parameters in the production process to set certain conditions to understand margin products, is one of the most important ring; each quality characteristics are an ideal target, in Chang et.al (2009) article, we discuss a condition characterized by the quality of "bigger is better", the optimal solution still exist on this paper to facilitate the multivariate normal distribution of the number of quality characteristics of the basic assumptions.

    目錄 摘要 ……………………………………………Ⅰ Abstract ………………………………………Ⅱ 目錄 …………………………………………… Ⅲ 第一章 緒論……………………………………1 第二章 文獻探討………………………………4 第三章 主要結果………………………………7 3-1 多元對數常態分配……………………7 3-2 越大越好的品質特性…………………8 第四章 結論 ………………………………… 11 文獻探討 ……………………………………… 12

    Arcelus, F.J., Rahim, M.A., 1991. Joint determination of optimum variable and attribute target means. Naval Research Logistics 38 (6), 851–864.
    Chang, Y.-C., Hung, W.-L., 2007. LINEX loss functions with applications to determining the optimum process parameters. Quality and Quantity 41, 291–301.
    Dodson, B.L., 1993. Determining the optimum target value for a process with upper and lower specifications. Quality Engineering 5 (3), 393–402.
    Elsayed, E.A., Chen, A., 1993. Optimal levels of process parameters with multiple characteristics. International Journal of Production Research 31 (5), 1117–1132.
    Golhar, D.Y., Pollock, S.M., 1988. Determination of the optimal process mean and the upper limit of the canning problem. Journal of Quality Technology 20, 188–192.
    Huang, Y.-F., 2000. Determination of the best mean in the Taguchi: Quality selection model. International Journal of Production Planning and Control 11 (6), 565–571.
    Huang, Y.-F., 2001. Trade-off between quality and cost. Quality and Quantity 35, 265–276.
    Lee, M.K., Kwon, H.M., Hong, S.H., Ha, J.W., 2006. Economic selection of sub-process mean values for a mixture production process. International Journal of Production
    Research 44 (20), 4367–4376.
    Rahim, M.A., Shaibu, A.B., 2000. Economic selection of optimal target values. Process Control and Quality 11 (5), 369–381.
    Spring, F.A., Yeung, A.S., 1998. A general class of loss functions with industrial applications. Journal of Quality Technology 30, 152–162.
    Taguchi, G., 1986. Introduction to Quality Engineering. Asia Productivity Organization, Tokyo.
    Taguchi, G., 1987. Introduction to Quality Engineering, Course Manual. American Supplier Institute Inc.
    Taguchi, G., Chowdhury, S., Wu, Y., 2004. Taguchi’s Quality Engineering Handbook. Wiley-Interscience.
    Varian, H.R., 1975. A Bayesian approach to real estate assessment. In: Fienberg, S.E., Zellner, A. (Eds.), Studies in Bayesian Econometrics and Statistics in Honor of Leonard J.
    Savag. North-Holland, Amsterdam, pp. 195–208.
    Yang, S.F., 1997. An optimal design of joint _X & S control charts using quadratic loss function. International Journal of Quality and Reliability Management 11 (9), 948–966.
    Chang Y.C a,, Liu C.T b, Hung W.L(2009)Optimization of process parameters using weighted convex loss functions. 752-763.
    Yu, J., Chen, X., Hung, T.-R., Thibault, F., 2004. Optimization of extrusion blow molding process using soft computing and Taguchi method. Journal of Intelligent Manufacturing
    15, 625–634.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE