研究生: |
黃國瑋 Kuo-Wei Huang |
---|---|
論文名稱: |
串聯電極順序驅動之大位移梳狀靜電致動器之控制 Control of Comb-Drive Actuators with Serial Comb Electrodes to Expand Traveling Range |
指導教授: |
陳榮順
Rong-Shun Chen 侯帝光 Ti-Kuang Hou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 微機電 、梳狀致動器 、大位移 、數位控制 |
外文關鍵詞: | MEMS, Comb Drive Actuator, Large Displacement, Digital Control |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微機電領域裡,靜電致動已廣為使用,其中又以梳狀致動器廣受歡迎,其具有容易製造、驅動電壓小、振動頻率高與輸入/輸出呈線性等優點。梳狀致動器與別的元件整合容易,應用範圍相當廣泛,如XY平台、共振器、力平衡式加速規、微小測試系統等。然而由於製程誤差所導致之不準確性,使得梳狀致動器在製作過程中無法做出完全對稱的電極,隨著行進距離之增加,電極間相互重疊之面積也增加,造成垂直於運動方向之靜電力日益增大,最後導致致動電極相互接觸,進而無法有效提升側向之行進距離。
本論文利用串聯電極結構配合電壓切換控制,達成順序驅動之目的,延後梳狀電極側吸現象之發生,以期能延長行進距離。此外,為能掌握梳狀電極之相對位移量,以達成位置回授控制,本文設計一電容感測電路搭配感測電極結構作為感測器,將所擷取之訊號透過類比/數位轉換傳送給控制器,作為位置回授控制訊號,以判別致動電壓切換時機來確保及增進其性能。最後使用個人電腦,利用Matlab Simulink建立人機介面及控制器程式以實現整個系統。
[1]W. C. Tang and T. H. Nguyen,“Laterally Driven Polysilicon Resonant Microstructures,”Sensors and Actuators, Vol.20, pp.25-32, 1989.
[2]C.-H. Kim, H.-M. Jeong, J. U. Jeon, and Y.-K. Kim,“Silicon Micro XY-Stage With a Large Area Shuttle and No-Etching Holes for SPM-Based Data Storage,”Journal of Microelectromechanical Systems, Vol. 12, pp. 470 – 478, 2003.
[3]J. W. Weigold and S. W. Pang, “Fabrication of Thick Si Resonators With a Frontside-Release Etch-Diffusion Process,”Journal of Microelectromechanical Systems, Vol. 7, pp. 201 – 206, 1998.
[4]B. Ha, Y. Oh, B. Lee,“A Area Variable Capacitive Microacceletometer With Force Balancing Electrodes,” Position Location and Navigation Symposium, IEEE, pp. 146 – 151, 1998.
[5]M. A. Haque and M. T. A. Saif,“Microscale Materials Testing Using MEMS Actuators,”Journal of Microelectromechanical Systems, Vol. 10, pp. 146 – 152, 2001.
[6]H. C. Nathanson, W. E. Newell, R. A. Wickstrom, J. R. Davis, Jr. ,“The resonant gate transistor”, Electron Devices, IEEE Transactions on Vol 14, Issue 3, pp. 117-133,1967.
[7]H. H. Woodson and J. R. Melcher,“Electromechanical Dynamics”, Part 1: Discrete System, Chap. 3, John Wiley & Sons, New York, 1968.
[8]T. Hirano, T. Furuhata, and K. J. Gabriel, “Design, Fabrication, and Operation of Submicron Gap Comb Drive Microactuator,” Journal of Microelectromechanical Systems, Vol. 1, pp 52-59, 1992.
[9]R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek,“Comb Drive Actuators For Large Displacements,” Journal of Micromechanics and Microengineering, Vol. 6, pp 320-329, 1996.
[10]J. D. Grade, H. Jerman, and T. W. Kenny, “Designs of Large Deflection Electrostatic Actuators”, Journal of Microelectromechanical Systems, Vol. 12, pp 335 – 343, 2003.
[11]J. Hsieh and W. Fang, “A Boron Etch-Stop Assisted Lateral Silicon Etching Process For Improved High-Aspect-Ratio Silicon Micromachining And Its Applications,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 574-581, 2002.
[12]G. Zhou and P. Dowd, “Tilted Folded-Beam Suspension For Extending the Stable Travel Range of Comb Drive Actuators,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 178-183, 2003.
[13]顧成麟,”大位移梳狀致動器回授控制”, 國立清華大學動力機械學系碩士論文, 2004.
[14]C. C. Chen and C. K. Lee,” Design And Modeling For Comb Drive Actuator With Enlarged Static Displacement”, Sensors and Actuators A, pp. 530–539, 2004.
[15]侯帝光,”串聯電極順序驅動之大位移梳狀靜電致動器的設計”, 第八屆奈米工程暨微系統技術研討會,2004.