研究生: |
黃騎德 Huang, Chi-Te |
---|---|
論文名稱: |
Synthesis, Characterization, and Applications of Si, GaN, and InN Nanowires 矽、氮化鎵及氮化銦奈米線之合成、鑑定和應用研究 |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 奈米線 、矽 、氮化鎵 、氮化銦 、奈米發電機 |
外文關鍵詞: | Nanowire, Si, GaN, InN, Nanogenerator |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Er-doped Si NWs have been grown via a vapor transport and condensation method with ErCl3。6H2O powder as a source. The Er-doped Si NWs exhibit the room temperature PL at the wavelength of 1.54 μm, ideal for optical communication. From I-V measurements, the resistivity of 4.2 at. % Er-doped Si NWs was determined to be 1.5×10-2 Ω-cm. The Er-doped Si NWs were found to possess excellent field emission properties with a field enhancement factor as high as 1260. The rich variety of physical properties exhibited by the Er-doped Si NWs points to versatile applications for advanced devices.
Room temperature ferromagnetism with 1.54 μm light-emitting properties has been discovered for Er-doped Si nanocables. The Er-doped Si nanocables were synthesized via the vapor transport and condensation method using the ErCl3.6H2O as the doping source. The doping concentration of Er within the Si nanocables could be controlled via varying the weight ratio of Si:ErCl3.6H2O. The saturation magnetism was found to increase with the Er concentration and decrease in temperature. The novel optical and magnetic properties indicate that Er-doped Si nanocables have the potential for applications of nanoscale Si-based spintronics or optoelectronics.
Three-fold symmetrically distributed GaN NW arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (000 ), (2 2), and ( 112) planes and the angle between the GaN NW and the substrate surface is about 62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive AFM in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5%-10% of the NWs had piezoelectric output voltages exceeding –(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than ZnO NWs.
InN NWs have been successfully synthesized via the thermal evaporation and condensation process. The synthesis of InN NWs is based on the VLS process and the growth direction of InN NWs is along [01 0]. Based on the calculated results, the magnitude and distribution of the piezopotential in a bent InN NW are found to strongly depend on the growth direction of the NW. If the diameter, length, and applied force are the same, the magnitude of the negative as well as positive piezopotential in the InN NW with a [01 0] growth direction would be almost 20 times larger than that in the InN NW with a [0001] growth direction. The piezopotential of a bent InN NW growing along [01 0] can be positive, negative and zero depending on the direction of the applied transverse force. By measuring the output voltage of a InN NW based nanogenerator, about 40% to 55% of output voltages are within the ranges from -1 to -20 mV and 25% to 30% of output voltages would exceed -100 mV. Some output voltages could reach the magnitude of -1000 mV, showing its great potential for fabricating high output nanogenerators.
Chapter 1: Nanotechnology
[1.1] G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38, 6131-6134 (1965)
[1.2] W. Lu and C. M. Lieber, "Nanoelectronics from the bottom up," Nat. Mater. 6, 841-850 (2007)
[1.3] L. J. Chen, "Silicon nanowires: the key building block for future electronic devices," J. Mater. Chem. 17, 4639-4643 (2007)
[1.4] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, "Small-diameter silicon nanowire surfaces," Science 299, 1874-1877 (2003)
[1.5] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature 464, 392-395 (2010)
[1.6] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009)
[1.7] Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and Ali Javey, "Black Ge based on crystalline/amorphous core/shell nanoneedle arrays" Nano Lett. 10, 520-523 (2010)
[1.8] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach," Nat. Mater. 6, 951-956 (2007)
[1.9] I. Ponomareva, D. Srivastava, and M. Menon, "Thermal conductivity in thin silicon nanowires-Phonon confinement effect," Nano Lett. 7, 1155-1159 (2007)
[1.10] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, "New directions for low-dimensional thermoelectric materials," Adv. Mater. 19, 1043-1053 (2007)
[1.11] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, "Thermal conductivity of individual silicon nanowires" Appl. Phys. Lett. 83, 2934-2936 (2003)
[1.12] L. Qu, L. Dai, M. Stone, Z. Xia, and Z. L. Wang, "Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off," Science 322, 238-242 (2008)
[1.13] C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen, and Z. L. Wang, "Elastic properties and buckling of silicon nanowires," Adv. Mater. 20, 3919-3923 (2008)
[1.14] X. L. Feng, R. He, P. Yang, and M. L. Roukes, "Very high frequency silicon nanowire electromechanical resonators," Nano Lett. 7, 1953-1959 (2007)
[1.15] A. S. Paulo, N. Arellano, J. A. Plaza, R. He, C. Carraro, R. Maboudian, R. T. Howe, J. Bokor, and P. Yang,, "Suspended mechanical structures based on elastic silicon nanowire arrays," Nano Lett. 7, 1100-1104 (2007)
[1.16] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. De Heer, "Electrostatic deflections and electromechanical resonances of carbon nanotubes," Science 283, 1513-1516 (1999)
[1.17] Q. Xiong, N. Duarte, S. Tadigadapa, and P. C. Eklund, "Force-deflection spectroscopy: a new method to determine the Young's modulus of nanofilaments," Nano Lett. 6, 1904-1909 (2006)
[1.18] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science 294, 1313-1317 (2001)
[1.19] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, "Silicon vertically integrated nanowire field effect transistors," Nano Lett. 6, 973-977 (2006)
[1.20] O. Gunawan, L. Sekaric, A. Majumdar, M. Rooks, J. Appenzeller, J. W. Sleight, S. Guha, and W. Haensch, "Measurement of carrier mobility in silicon nanowires," Nano Lett. 8, 1566-1571 (2008)
[1.21] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang, " Fabrication of a high-brightness blue-light-emitting diode using a ZnO nanowire array grown on p-GaN thin film," Adv. Mater. 21, 2767-2770 (2009)
[1.22] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C.M. Lieber, "Gallium nitride-based nanowire radial heterostructures for nanophotonics," Nano Lett. 4, 1975-1979 (2004)
[1.23] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
[1.24] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
[1.25] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers," Nat. Mater. 7, 701-706 (2008)
[1.26] C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, and L. J. Chen, "Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications," J. Mater. Chem. 19, 7277–7283 (2009)
[1.27] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High performance lithium battery anodes using silicon nanowires," Nat. Nanotech. 3, 31-35 (2008)
[1.28] L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, "Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries," Nano Lett. 9, 3370-3374 (2009)
[1.29] K. Peng, J. Jie, W. Zhang, and S. T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Appl. Phys. Lett. 93, 033105 (2008)
[1.30] Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Fun. Mater. 18, 3553-3567 (2008)
[1.31] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature 414, 332-337. (2001)
[1.32] B. Weintraub, Y. Wei, and Z. L. Wang, "Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells," Angew. Chem. Int. Ed. 48, 8918-8923 (2009)
[1.33] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002)
[1.34] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-890 (2007)
[1.35] A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, and P. Yang, "Oligo- and polythiophene/ZnO hybrid nanowire solar cells," Nano Lett. 10, 334-340 (2010)
[1.36] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater. 4, 455-459 (2005)
[1.37] E. C. Garnett and P. Yang, "Silicon nanowire radial p-n junction solar cells," J. Am. Chem. Soc. 130, 9224-9225 (2008)
[1.38] Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, "Three dimensional nanopillar array photovoltaics on low cost and flexible substrates," Nat. Mater. 8, 648-653 (2009)
[1.39] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science 320, 634-638 (2008)
[1.40] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
[1.41] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, and J. P. Fleurial, "Nanostructured bulk silicon as an effective thermoelectric material," Adv. Fun. Mater. 19, 2445-2452 (2009)
[1.42] Y. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhau, G. Chen, and Z. Ren, "Structure study of bulk nanograined thermoelectric bismuth antimony telluride," Nano Lett. 9, 1419-1422 (2009)
[1.43] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren "Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys," Nano Lett. 8, 4670-4674 (2008)
[1.44] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, "Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy," Appl. Phys. Lett. 93, 193121 (2008)
[1.45] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature 414, 345-352 (2001)
[1.46] M. Z. Jacobson, W. G. Colella, and D. M. Golden, "Cleaning the air and improving health with hydrogen fuel-cell vehicles," Science 308, 1901-1905 (2005)
[1.47] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
[1.48] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
[1.49] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
[1.50] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle-movement- driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
[1.51] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip-to- nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
[1.52] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
[1.53] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
[1.54] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, "Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods," Adv. Mater. 21, 2185-2189 (2009)
[1.55] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
[1.56] C. T. Huang, J. Song, W. F. Lee, Y. Ding, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
[1.57] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, " Single-InN-nanowire nanogenerator with upto 1 V output voltage," Adv. Mater. (in press)
[1.58] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang and Y. Zhang, "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Adv. Fun. Mater. 14, 943-956 (2004)
[1.59] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, "Carbon nanotube-based nonvolatile random access memory for molecular computing," Science 289, 94-97 (2000)
[1.60] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002)
[1.61] D. Chiba, M. Yamanouch, F. Matsukura and H. Ohno, "Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor," Science 301, 943-945 (2003)
[1.62] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors," Science 287, 1019-1022 (2000)
[1.63] M. Yamanouchi, J. Ieda, F. Matsukura, S. E. Barnes, S. Maekawa, and H. Ohno, "Universality classes for domain wall motion in the ferromagnetic semiconductor (Ga,Mn)As," Science 317, 1726-1729 (2007)
[1.64] H. Ohno, "Making nonmagnetic semiconductor magnetic," Science 281, 951-956 (1998)
[1.65] Y. Dong, B. Tian, T. Kempa, and C. M. Lieber, "Coaxial group III-nitride nanowire photovoltaics," Nano Lett. 9, 2183-2187 (2009)
[1.66] T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng and C. M. Lieber, "Single and tandem axial p-i-n nanowire photovoltaic devices," Nano Lett. 8, 3456-3460 (2008)
[1.67] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, "Piezoelectric-potential-controlled polarity-reversible schottky diodes and switches of ZnO wires," Nano Letters. 8, 3973-3977 (2008)
[1.68] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao and Z. L. Wang, "Flexible piezotronic strain sensor," Nano Letters, 8, 3035–3040 (2008)
[1.69] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Appl. Phys. Lett. 4, 89-90 (1964)
[1.70] B. J. Kim, J. Tersoff, C. Y. Wen, M. C. Reuter, E. A. Stach, and F. M. Ross, "Determination of size effects during the phase transition of a nanoscale Au-Si eutectic," Phys. Rev. Lett. 103, 155701-155704 (2009)
[1.71] B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, "Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth," Science 322, 1070-1073 (2008)
[1.72] C. Wiethoff, F. M. Ross, M. Copel, M. H. V. Hoegen, and F. J. M. Z. Heringdorf, "Au stabilization and coverage of sawtooth facets on Si nanowires grown by vapor-liquid-solid epitaxy," Nano Lett. 8, 3065–3068 (2008)
[1.73] S. M. Arnold and S. E. Kounce, “Filamentary growths on metals at elevated temperatures,” J. Appl. Phys. 27, 964-965 (1956)
[1.74] Y. L. Chueh , M. W. Lai , J. Q. Liang , L. J. Chou, and Z. L. Wang, "Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process," Adv. Fun. Mater. 16, 2243-2251 (2006)
[1.75] L. C. Campos, M. Tonezzer, A. S. Ferlauto, V. Grillo, R. Magalhaes-Paniago, S. Oliveira, L. O. Ladeira, and R. G. Lacerda, "Vapor-solid-solid growth mechanism driven by epitaxial match between Solid AuZn alloy catalyst particles and ZnO nanowires at low temperatures," Adv. Mater. 20, 1499-1505 (2008)
[1.76] Z. Li, L. Cheng, Q. Sun, Z. Zhu, M. J. Riley, M. Aljada, Z. Cheng, X. Wang, G. R. Hanson, S. Qiao, S. C. Smith, and G. Q. Lu, "Diluted magnetic semiconductor nanowires prepared by the solution-liquid-solid method," Angew. Chem. Int. Ed. 49, 2777-2781 (2010)
[1.77] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, "Oxide-assisted growth and optical characterization of gallium-arsenide nanowires," Appl. Phys. Lett. 78, 3304-2206 (2001)
[1.78] R. Q. Zhang , Y. Lifshitz, and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Adv. Mater. 15, 635-640 (2003)
Chapter 2: Material Properties
[2.1] J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, "Mesoscopic size effects on the thermal conductance of silicon nanowire," Nano Lett. 9, 1861-1865 (2009)
[2.2] L. Shi, D. Yao, G. Zhang, and B. Li, "Size dependent thermoelectric properties of silicon nanowires," Appl. Phys. Lett. 95, 063102 (2009).
[2.3] G. Zhang, Q. Zhang, C. T. Bui, G. Q. Lo, and B. Li, "Thermoelectric performance of silicon nanowires," Appl. Phys. Lett. 94, 213108 (2009).
[2.4] T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, "Atomistic design of thermoelectric properties of silicon nanowires," Nano Lett. 8, 1111-1114 (2008)
[2.5] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C.M. Lieber, "High performance silicon nanowire field effect transistors," Nano Lett. 3, 149-152 (2003)
[2.6] C. Yang, Z. Zhong, and C.M. Lieber, "Encoding electronic properties by synthesis of axial modulation doped silicon nanowires," Science 310, 1304-1307 (2005)
[2.7] Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C.M. Lieber, "Si/a-Si core/shell nanowires as nonvolatile crossbar switches," Nano Lett. 8, 386-391 (2008)
[2.8] Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, "New nanostructured Li2S/silicon rechargeable battery with high specific energy," Nano Lett. 10, 1486-1491 (2010)
[2.9] C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, "Solution-grown silicon nanowires for lithium-ion battery anodes," ACS nano 4, 1443-1450 (2010)
[2.10] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature 451, 163-167 (2008)
[2.11] C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, "Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors," Nano Lett. 6, 2929-2934 (2006)
[2.12] O. Hayden, R. Agarwal, and C.M. Lieber, "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection," Nat. Mater. 5, 352-356 (2006)
[2.13] E. Garnett, and P. Yang, "Light trapping in silicon nanowire solar cells," Nano Lett. 10, 1082-1087 (2010)
[2.14] B. Tian, T. J. Kempa, and C. M. Lieber, "Single nanowire photovoltaics," Chem. Soc. Rev. 38, 16-24 (2009)
[2.15] L. J. Chen, "Silicon nanowires: the key building block for future electronic devices," J. Mater. Chem. 17, 4639-4643 (2007)
[2.16] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, "Doping and electrical transport in silicon nanowires," J. Phys. Chem. B 104, 5213-5216 (2000).
[2.17] M. V. Fernandez-Serra, Ch. Adessi, and X. Blase, "Conductance, surface traps, and passivation in doped silicon nanowires," Nano Lett. 6, 2674-2678 (2006)
[2.18] G. Zheng, W. Lu, S. Jin, and C.M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004).
[2.19] K. K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, and S. W. Novak, "Structural and electrical properties of trimethylboron-doped silicon nanowires," Appl. Phys. Lett. 85, 3101-3103 (2004).
[2.20] Z. Wang and J. L. Coffer, "Erbium surface-enriched silicon nanowires," Nano Lett. 2, 1303-1305 (2002)
[2.21] G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004)
[2.22] J. S. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999).
[2.23] J. Wu, P. Punchaipetch, R. M. Wallace, and J. L. Coffer, "Fabrication and optical properties of Erbium-doped germanium nanowires," Adv. Mater. 16, 1444-1448 (2004).
[2.24] J. Wang, M. J. Zhou, S. K. Hark, Q. Li, D. Tang, M. W. Chu, and C. H. Chen, "Local electronic structure and luminescence properties of Er doped ZnO nanowires," Appl. Phys. Lett. 89, 221917 (2006).
[2.25] L. Zhao, T. Lu, M. Zacharias, J. Yu, J. Shen, H. Hofmeister, M. Steinhart, and U. Gosele," Integration of erbium-doped lithium niobate microtubes into ordered macroporous silicon," Adv. Mater. 18, 363-366 (2006).
[2.26] Y. Ding, X. D. Wang, and Z. L. Wang, "Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite", Chem. Phys. Lett. 398 32-36 (2004)
[2.27] X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, "Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts," Science 303, 1348-1351 (2004)
[2.28] X. Y. Kong and Z. L. Wang, "Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals," Appl. Phys. Letts. 84, 975-977 (2004)
[2.29] Z. L. Wang, X. Y. Kong, and J. M. Zuo, "Induced growth of asymmetric nanocantilever arrays on polar surfaces," Phys. Rev. Letts. 91, 185502 (2003)
[2.30] Z. L. Wang, "Nanopiezotronics," Adv. Mater. 19, 889-892 (2007)
[2.31] Z. L. Wang, "Piezotronic and piezophototronic effects," J. Phys. Chem. Lett. 1, 1388-1393 (2010)
[2.32] Y. Gao and Z. L. Wang, "Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire," Nano Lett. 9, 1103-1110 (2009)
[2.33] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Res. 2, 624-629 (2009)
[2.34] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Adv. Funct. Mater. 14, 943-956 (2004)
[2.35] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
[2.36] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
[2.37] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with
laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
[2.38] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
[2.39] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
[2.40] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
[2.41] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
[2.42] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, "Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods," Adv. Mater. 21, 2185-2189 (2009)
[2.43] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
[2.44] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
[2.45] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, " Single-InN-nanowire nanogenerator with upto 1 V output voltage," Adv. Mater. (in press)
[2.46] Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, "Coaxial group III-nitride nanowire photovoltaics," Nano Lett. 9, 2183-2187 (2009)
[2.47] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically aligned p-Type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells," Nano Lett. 8, 4191-4195 (2008)
[2.48] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C.M. Lieber, "Gallium nitride-based nanowire radial heterostructures for nanophotonics," Nano Lett. 4, 1975-1979 (2004)
[2.49] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride-gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004)
[2.50] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
[2.51] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well heterostructures for wavelength-controllednanowire lasers," Nat. Mater. 7, 701-706 (2008)
[2.52] A. Cremades, L. Gorgens, O. Ambacher, M. Stutzmann, and F. Scholz, "Structural and optical properties of Si-doped GaN," Phys. Rev. B 61, 2812-2818 (2000)
[2.53] J. Jayapalan, B. J. Skromme, R. P. Vaudo, and V. M. Phanse, "Optical spectroscopy of Si-related donor and acceptor levels in Si-doped GaN grown by hydride vapor phase epitaxy," Appl. Phys. Lett. 73, 1188-1190 (1998)
[2.54] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
[2.55] T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Luth, "Photoluminescence and intrinsic properties of MBE-grown InN nanowires," Nano Lett. 6, 1541-1547 (2006)
[2.56] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, "Synthesis of long Iindium nitride nanowires with uniform diameters in large quantities," Small 1, 1004 (2005)
[2.57] M. Fujiwara, Y. Ishitani, X. Wang, S. B. Che, and A. Yoshikawa, " Infrared analysis of hole properties of Mg-doped p-type InN films," Appl. Phys. Lett. 93, 231903 (2008)
[2.58] X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa, "Hole mobility in Mg-doped p-type InN films," Appl. Phys. Lett. 92, 132108 (2008)
[2.59] R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, "Evidence for p-type doping of InN," Phys. Rev. Lett. 96, 125505 (2006)
Chapter 4: Er-doped Silicon Nanowires with 1.54 μm Light-emitting and Excellent Field Emission Properties
[4.1] H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, "1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon," Appl. Phys. Lett. 43, 943-945 (1983)
[4.2] G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, "Room-temperature electroluminescence from Er-doped crystalline Si," Appl. Phys. Lett. 64, 2235-2237 (1994)
[4.3] J. S. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999)
[4.4] J. Wu, P. Punchaipetch, R. M. Wallace, and J. L. Coffer, "Fabrication and optical properties of erbium-doped germanium nanowires," Adv. Mater. 16, 1444-1448 (2004)
[4.5] Z. Wang and J. L. Coffer, "Erbium surface-enriched silicon nanowires," Nano Lett. 2, 1303-1305 (2002)
[4.6] K. Suh, J. H. Shin, O. H. Park, B. S. Bae, J. C. Lee, and H. J. Choi, "Optical activation of Si nanowires using Er-doped, sol-gel derived silica," Appl. Phys. Lett. 86, 053101 (2005)
[4.7] J. Wang, M. J. Zhou, S. K. Hark, Q. Li, D. Tang, M. W. Chu, and C. H. Chen, "Local electronic structure and luminescence properties of Er doped ZnO nanowires," Appl. Phys. Lett. 89, 221917 (2006)
[4.8] L. Zhao, T. Lu, M. Zacharias, J. Yu, J. Shen, H. Hofmeister, M. Steinhart, and U. Gosele, "Integration of erbium-doped lithium niobate microtubes into ordered macroporous silicon," Adv. Mater. 18, 363-366 (2006)
[4.9] J. H. Shin, M. J. Kim, S. Y. Seo, and C. Lee, "Composition dependence of room temperature 1.54 μm Er3+ luminescence from erbium-doped silicon: oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition," Appl. Phys. Lett. 72, 1092-1094 (1998)
[4.10] M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, "1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+," Appl. Phys. Lett. 71, 1198-1120 (1997)
[4.11] A. Polman, G. N. van den Hoven, J. S. Custer, J. H. Shin, R. Serna, and P. F. A. Alkemade, "Erbium in crystal silicon: optical activation, excitation, and concentration limits," J. Appl. Phys. 77, 1256-1262 (1995)
[4.12] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, "Small-diameter silicon nanowire surfaces," Science 299, 1874-1877 (2003)
[4.13] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science 294, 1313-1317 (2001)
[4.14] Y. Cui and C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," Science 291, 851-853 (2001)
[4.15] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, "Doping and electrical transport in silicon nanowires," J. Phys. Chem. B. 104, 5213-5216 (2000).
[4.16] K. K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, and S. W. Novak, "Structural and electrical properties of trimethylboron-doped silicon nanowires," Appl. Phys. Lett. 85, 3101-3103 (2004).
[4.17] W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, "Synthesis of large areas of highly oriented, very long silicon nanowires," Adv. Mater. 12, 1343-1345 (2000).
[4.18] Q. Gu, H. Dang, J. Cao, J. Zhao, and S. Fan, "Silicon nanowires grown on iron-patterned silicon substrates," Appl. Phys. Lett. 76, 3020-3021 (2000).
[4.19] R. Q. Zhang, Y. Lifshitz, and S.T. Lee, "Oxide assisted growth of semiconducting nanowires," Adv. Mater. 15, 635-640 (2003).
[4.20] V. Schmidt, S. Senz, and U. Goesele, "Diameter-dependent growth direction of epitaxial silicon nanowires," Nano Lett. 5, 931-935 (2005).
[4.21] M. Dovrat, N. Arad, X. H. Zhang, S. T. Lee, and A. Sa’ar, "Optical properties of silicon nanowires from cathodoluminescence imaging and time-resolved photoluminescence spectroscopy," Phys. Rev. B 75, 205343 (2007)
[4.22] S. M. Sze, "Physics of Semiconductor Devices," 2nd edition Wiley, New York 304 (1981)
[4.23] J. L. Benton, J. Michel, L. C. Kimerling, D. C. Jacobson, Y. H. Xie, D. J. Eaglesham, E. A. Fitzgerald, and J. M. Poate, "The electrical and defect properties of erbium-implanted silicon," J. Appl. Phys. 70, 2667-2671 (1991).
[4.24] Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, "Synthesis of taperlike Si nanowires with strong field emission," Appl. Phys. Lett. 86, 133112 (2005)
[4.25] Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, and T. K. Sham, "Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains," Appl. Phys. Lett. 79, 1673-1675 (2001)
[4.26] H. W. Wu, C. J. Tsai, and L. J. Chen, "Room temperature ferromagnetism in Mn+-implanted Si nanowires," Appl. Phys. Lett. 90, 043121 (2007)
Chapter 5: Erbium-doped Silicon Nanocables with 1.54 μm Light-emitting and Tunable Ferromagnetic Properties
[5.1] L. J. Chen, "Silicon nanowires the key building block for future electronic devices," J. Mater. Chem. 17, 4639-4643 (2007)
[5.2] W. Lu and C. M. Lieber, "Nanoelectronics from the bottom up," Nat. Mater. 6, 841 (2007).
[5.3] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, "Small-diameter silicon nanowire surfaces," Science 299, 1874-1877 (2003).
[5.4] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, "Thermal conductivity of individual silicon nanowires," Appl. Phys. Lett. 83, 2934-2936, (2003)
[5.5] C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen, and Z. L. Wang, "Elastic properties and buckling of Silicon nanowires," Adv. Mater. 20, 3919-3923 (2008).
[5.6] S. Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gősele, and C. Ballif, "Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires," Nano Lett. 6, 622-625 (2006)
[5.7] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
[5.8] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, "Silicon vertically integrated nanowire field effect transistor," Nano Lett. 6, 673-677 (2006)
[5.9] K. Peng, J. Jie, W. Zhang, and S. T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Appl. Phys. Lett. 93, 033105 (2008)
[5.10] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, And Y. Cui, "High performance lithium battery anodes using silicon nanowires," Nat. Nanotech. 3, 31-35 (2008)
[5.11] S. Coffa, F. Priolo, G. Franzo, V. Bellani, A. Carnera, and C. Spinella, "Optical activation and excitation mechanisms of Er implanted in Si," Phys. Rev. B 48, 11782-11789 (1993).
[5.12] J. S. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, "Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals," J. Am. Chem. Soc. 121, 1888-1892 (1999).
[5.13] G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, "Room-temperature electroluminescence fro Er-doped crystalline Si," Appl. Phys. Lett. 64, 2235-2237 (1994).
[5.14] S. Coffa, G. Franzo, and F. Priolo, "High efficiency and fast modulation of Er-doped light emitting Si diodes," Appl. Phys. Lett. 69, 2077-2079 (1996).
[5.15] C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, "Er-doped silicon nanowires with 1.54 μm light-emitting and enhanced electrical and field emission properties," Appl. Phys. Lett. 91, 093133 (2007).
[5.16] P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Appl. Phys. 91, 534-536 (2002).
[5.17] H. Ohno, "Making nonmagnetic semiconductors ferromagnetic," Science 281, 951-956 (1998).
[5.18] H. W. Wu, C. J. Tsai, and L. J. Chen, "Room temperature ferromagnetism in Mn+-implanted Si nanowires," Appl. Phys. Lett. 90, 043121 (2007)
[5.19] Y. J. Li, C. Y. Wang, M. Y. Lu, K. M. Li, and L. J. Chen, "Electrodeposited hexagonal ringlike superstructures composed of hexagonal Co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties," Crys. Growth & Design 8, 2598-2602 (2008).
[5.20] M. Y. Lu, L. J. Chen, W. Mai, and Z. L. Wang, "Tunable electric and magnetic properties of CoxZn1−xS nanowires," Appl. Phys. Lett. 93, 242503 (2008)
[5.21] J. M. Zavada, N. Nepal, C. Ugolini, J. Y. Lin, H. X. Jiang, R. Davies, J. Hite, C. R. Abernathy, S. J. Pearton, E. E. Brown, and U. Hommerich, "Optical and magnetic behavior of erbium-doped GaN epilayers grown by metal-organic chemical vapor deposition," Appl. Phys. Lett. 91, 054106 (2007).
[5.22] W. F. Lee, C. Y. Lee, M. L. Ho, C. T. Huang, C. H. Lai, H. Y. Hsieh, P. T. Chou, and L. J. Chen, "Nd-doped silicon nanowires with room temperature ferromagnetism and infrared photoemission," Appl. Phys. Lett. 94, 263117 (2009)
[5.23] J. P. Zhou, N. F. Chen, S. L. Song, C. L. Chai, S. Y. Yang, Z. K. Liu, and L. Y. Lin, "Magnetic properties of silicon doped with gadolinium," Appl. Phys. A 77, 599-602 (2003)
[5.24] J. F. Elliott, S. Legvold, and F. H. Spedding, "Magnetic properties of erbium metal," Phys. Rev. 100, 1595-1596 (1955).
[5.25] J. M. Cadogan, D. H. Ryan, Z. Altounian, X. Liu, and I. P. Swainson, "Magnetic structure of Er5Si4," J. Appl. Phys. 95, 7076-7078 (2004).
[5.26] R. M. Moon, W. C. Koehler, H. R. Child, and L. J. Raubenheimer, "Magnetic structures of Er2O3 and Yb2O3," Phys. Rev. 176, 722-731 (1968).
[5.27] P. I. Gaiduk, J. Chevallier, W. Wesch, and A. N. Larsen, "Er+ implantation in SnO2:SiO2 layers: structure changes and light emission," Nucl Inst and Methods Phys Res. B 267, 1336-1339 (2009).
[5.28] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, "Ferromagnetism in Fe-doped SnO2 thin films," Appl. Phys. Lett. 84, 1332-1334 (2004)
Chapter 6: GaN Nanowire Arrays for High-Output Nanogenerators
[6.1] Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Fun. Mater. 18, 3553-3567 (2008)
[6.2] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002)
[6.3] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature 414, 332-337 (2001)
[6.4] B. Weintraub, Y. Wei, and Z. L. Wang, "Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells," Angew. Chem. Int. Ed. 48, 8981-8985 (2009)
[6.5] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater. 4, 455-459 (2005)
[6.6] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-890 (2007)
[6.7] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
[6.8] L. Schlapbach, "Hydrogen-fuelled vehicles," Nature 460, 809-811 (2009)
[6.9] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature 414, 345-352 (2001)
[6.10] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
[6.11] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
[6.12] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
[6.13] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
[6.14] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
[6.15] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
[6.16] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with
laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
[6.17] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
[6.18] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, "Gallium nitride nanowire nanodevices," Nano Lett. 2, 101-104 (2002)
[6.19] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections," Nano Lett. 3, 1063-1066 (2003)
[6.20] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controllednanowire Lasers," Nat. Mater. 7, 701-706 (2008)
[6.21] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
[6.22] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
[6.23] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004)
[6.24] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically aligned p-Type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells," Nano Lett. 8, 4191-4195 (2008)
[6.25] R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Luth, "Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy," Nano Lett. 7, 2248-2251 (2007)
[6.26] S. D. Hersee, X. Sun, and X. Wang, "The controlled growth of GaN nanowires," Nano Lett. 6, 1808-1811 (2006)
[6.27] H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung, "Growth of GaN nanorods by hydride vapor phase epitaxy method,"Adv. Mater. 14, 991-993 (2002)
[6.28] J. Yoo, Y. J. Hong, S. J. An, G. C. Yi, B. Chon, T. Joo, J. W. Kim, and J. S. Lee, "Photoluminescent characteristics of Ni-catalyzed GaN nanowires," Appl. Phys. Lett. 89, 043124 (2006)
[6.29] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, "Crystallographic alignment of high-density gallium nitride nanowire arrays," Nat. Mater. 3, 524-528 (2004)
[6.30] Y. Gao and Z. L. Wang, "Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics," Nano Lett. 7, 2499-2505 (2007)
[6.31] V. A. Fonoberov and A. A. Balandin, "Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1-xN quantum dots," J. Appl. Phys. 94, 7178-7186 (2003)
[6.32] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical transport properties of single GaN and InN nanowires," J. Electronic Mater. 35, 738-743 (2006)
[6.33] Y. Gao and Z. L. Wang, "Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire," Nano Lett. 9, 1103-1110 (2009)
[6.34] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Res. 2, 624-629 (2009)
[6.35] Z. Y. Gao, J. Zhou, Y. D. Gu, P. Fei, Y. Hao, G. Bao, and Z. L. Wang, "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J. Appl. Phys. 105, 113707 (2009).
Chapter 7: Single InN Nanowire Nanogenerator with Upto 1 V Output Voltage
[7.1] Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Fun. Mater. 18, 3553-3567 (2008)
[7.2] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature 414, 332-337 (2001)
[7.3] B. Weintraub, Y. Wei, and Z. L. Wang, "Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells," Angew. Chem. Int. Ed. 48, 8981-8985 (2009)
[7.4] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002)
[7.5] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-890 (2007)
[7.6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168-171 (2008)
[7.7] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science 320, 634-638 (2008)
[7.8] B. C. H. Steele, A. Heinzel, "Materials for fuel-cell technologies," Nature 414, 345-352 (2001)
[7.9] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
[7.10] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
[7.11] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with
laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
[7.12] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
[7.13] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
[7.14] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
[7.15] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
[7.16] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y.
Lee, J. M. Kim, and S. W. Kim, "Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods," Adv. Mater. 21, 2185-2189 (2009)
[7.17] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
[7.18] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
[7.19] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano Lett. 10, 726-731 (2010)
[7.20] T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Luth, "Photoluminescence and intrinsic properties of MBE-grown InN nanowires," Nano Lett. 6, 1541-1547 (2006)
[7.21] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, "Gallium nitride nanowire nanodevices," Nano Lett. 2, 101-104 (2002)
[7.22] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and
P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections," Nano Lett. 3, 1063-1066 (2003)
[7.23] S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, and S. Gradecak, "Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution,"Nano Lett. 9, 3940-3944 (2009)
[7.24] Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Lett. 3, 343-346 (2003)
[7.25] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride-gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004)
[7.26] F. Qian, Y. Li, S. Gradecak, H, G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well heterostructures for wavelength-controllednanowire Lasers," Nat. Mater. 7, 701-706 (2008)
[7.27] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002)
[7.28] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, "Vertically aligned p-Type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells," Nano Lett. 8, 4191-4195 (2008)
[7.29] Y. Dong, B. Tian, T. Kempa, and C. M. Lieber, "Coaxial group III-nitride nanowire photovoltaics," Nano Lett. 9, 2183-2187 (2009)
[7.30] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, "Synthesis of long indium nitride nanowires with uniform diameters in large quantities," Small 1, 1004-1009 (2005)
[7.31] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager III, W. Shan, E. E. Haller, H. Lu, and W. J. Schaff, "Fermi-level stabilization energy in group III nitrides," Phys. Rev. B 71, 161201 (2005)
[7.32] Y. Gao and Z. L. Wang, "Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire," Nano Lett. 9, 1103-1110 (2009)
[7.33] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Res. 2, 624-629 (2009)
[7.34] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," J. Appl. Phys. 82, 2833-2839 (1997)
[7.35] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B 56, 10024 (1997)
[7.36] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, "Experimental and theoretical studies of phonons in hexagonal InN," Appl. Phys. Lett. 75, 3297-3299 (1999)
[7.37] V. Cimalla, V. Lebedev, F. M. Morales, M. Niebelschutz, G. Ecke, R. Goldhahn, and O. Ambacher, "Origin of n-type conductivity in nominally undoped InN," Mat.-Wiss. Werkstofftech. 37, 924-928 (2006)
Chapter 8: Future Prospects
[8.1] S. Coffa, G. Franzo, F. Priolo, A. Pacelli, and A. Lacaita, "Direct evidence of impact excitation and spatial profiling of excited Er in light emitting Si diodes," Appl. Phys. Lett. 73, 93-95 (1998)
[8.2] M. Matsuoka and S. I. Tohno, "Electroluminescence of erbium doped silicon films as grown by ion beam epitaxy," Appl. Phys. Lett. 71, 96-98 (1997)
[8.3] S. Coffa, G. Franzo, and F. Priolo, "High efficiency and fast modulation of Er-doped light emitting Si diodes," Appl. Phys. Lett. 69, 2077-2079 (1996)
[8.4] Z. L. Wang, and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 312, 242-246 (2006)
[8.5] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007)
[8.6] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34-39 (2009)
[8.7] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle movement driven nanogenerator," Nano Lett. 9, 1201-1205 (2009)
[8.8] S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated multilayer nanogenerator fabricated using paired nanotip to nanowire brushes," Nano Lett. 8, 4027-4032 (2008)
[8.9] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, "Piezoelectric nanogenerator using p-Type ZnO nanowire arrays," Nano Lett. 9, 1223-1227 (2009)
[8.10] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, "ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation," ACS Nano 3, 357-362 (2009)
[8.11] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Appl. Phys. Lett. 92, 022105 (2008)
[8.12] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "GaN nanowire arrays for high-output nanogenerators," J. Am. Chem. Soc. 132, 4766-4771 (2010)
[8.13] C. T. Huang, J. H. Song, C. M. Tsai, W. F. Lee, D. H. Lien, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, "Single-InN-nanowire nanogenerator with upto 1 V output voltage," Adv. Mater. (In press)