簡易檢索 / 詳目顯示

研究生: 黃禹傑
Yu-Chieh Huang
論文名稱: 利用次波長尺度金屬狹縫單邊激發之近場光學生醫掃瞄器
Single side emission of the subwavelength metallic slit for new generation near-field bio-scanner
指導教授: 曾繁根
Fan-Gang Tseng
魏培坤
Pei-Kuen Wei
錢景常
Ching-Chang Chieng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 82
中文關鍵詞: 近場光學時域有限差分表面電漿
外文關鍵詞: near-field optics, FDTD, surface plasmon
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA是生物遺傳的基本物質,細胞根據特定DNA序列產生特定蛋白質,執行細胞中的正常生理功能。現有之DNA序列檢測技術曠時費日、價格不斐,發展快速而且便宜的DNA序列檢測技術乃時勢所趨。近場光學生醫掃瞄器結合微奈米流道與近場光源,以奈微米流道迫使DNA分子拉伸通過狹縫,近場光源激發序列上之螢光分子,接收隨時變的螢光訊號便可以得知序列順序。近場光源的優點在於其解析能力突破繞射極限,約為100nm,但是DNA序列分子大小在nm~Ǻ等級,因此目前無法直接以近場光學生醫掃瞄器定序DNA序列。
    本論文提出以單邊激發的機制提高掃描器解析度。利用時域有限差分法模擬光波在奈米結構當中的傳遞情形,發現斜向入射光波引發狹縫中的directional coupling現象,狹縫出口處光能量匯聚於一點,猶如點光源,藉此大幅提高解析能力。
    到目前為止,本論文已對空氣-金屬、水-金屬介面完成模擬,理論最佳解析度約為10nm。除此之外,經由Aperture SNOM的量測結果,可以證實單邊激發的效應,但是顯微系統解析能力尚不足以驗證理論解析度。未來的工作著重於改善Apertureless SNOM解析度,期望證明模擬結果,並且建構近場光學生醫掃瞄系統,以DNA或螢光分子直接流過近場光源,這樣便可以得到隨時變的螢光訊號,推測系統的實際解析度。


    DNA molecules are the fundamental genetic elements of all creatures. According to the DNA sequence, cells produce certain albumins which execute ordinary physiology functions. Today’s techniques for sequencing DNA molecules are very expensive and take a lot of time, and it is impossible to sequence every human’s DNA. Therefore, there are great demands for a cheap and fast sequence technique.
    Near-field bio-scanner combines nano-micro fluidic channels and near-field light source. Nano-micro fluidic channels enforce DNA molecules to stretch and to flow over the near-field light source and the fluorescent molecules on the DNA sequence can be stimulated. As a result, we can acquire time dependent sequence signal by detecting the fluorescent signal in the far-field. The advantage of the near-field source lies in the ability to break the diffraction limit, and the resolution is about 100nm. Nonetheless, the size of a single DNA sequence is on the order of nm~Ǻ. So far, we can not measure single sequence signal by near-filed bio-scanner.
    This thesis proposes a new generation near-field bio-scanner using single side emission to advance the resolution limit of the bio-scanner. The finite-difference time-domain (FDTD) algorithm is used to explore the propagation behavior of the light wave in the nano-structures. We find that the directional coupling mechanism is evoked by incident light with oblique incident angle, and the energy converge into a small area promoting the resolution limit of the bio-scanner as a point light source in the best simulation parameters. To evidence the simulation results, we have used Aperture SNOM and Apertureless SNOM to measure energy distribution at the exit of the nano-slit.
    So far, we have already completed the simulation of the air-metal interface and water-metal interface structures, and the theoretical optimize resolution ability is about 10nm. Otherwise, we have proofed single side emission phenomenon by measurements of Aperture SNOM, but the resolution ability of our homemade Aperture SNOM is not good enough to testify the simulation results. On the other hand, measurements of Apertureless SNOM are degraded by the interference between background noise and direct or indirect evanescent wave at the tip end. Improving Apertureless SNOM to prove simulation results is one of the most important missions in the future. Constructing near-field bio-scanner system to obtain time-varying signal of DNA molecule or fluorescence beads would be a direct way to testify our results.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 一 序論 1 1.1 前言 1 1.2 文獻回顧-DNA序列檢測技術 3 1.2.1 Electrophoretic method 3 1.2.2 Nanopores for single molecule detection 5 1.2.3 Near-field scanner 6 1.3 研究動機與目的 8 二 近場光學與相關物理現象 10 2.1 遠場光學與繞射極限 10 2.2 近場光學的原理與顯微技術 13 2.3 近場光學的限制 16 2.4 次波長金屬結構對光波的影響 17 2.4.1 光波在次波長挾縫內的傳播行為 17 2.4.2次波長週期結構的聚焦效應 18 2.5 表面電漿效應 20 2.6 漸逝波的干涉 23 三 數值模擬原理 25 3.1 時域有限差分法 25 3.1.1 時間領域差分 26 3.1.2 電磁場的時間配置 27 3.1.3 空間旋度部份分解 28 3.2 TM mode FDTD method 29 3.3 TE mode FDTD method 31 3.4 時域有限差分法模擬TE與TM模態在挾縫的傳播情形 32 四 斜向入射引致單邊激發模擬結果 36 4.1 單邊激發表面電漿 36 4.2 模擬結果與分析(一) 37 4.3 模擬結果與分析(二) 49 4.4 模擬結果與分析(三) 58 五 儀器架設與量測結果 60 5.1 Apertureless SNOM與Aperture SNOM之機制 60 5.2 Aperture SNOM之架構與量測結果 61 5.3 Apertureless SNOM之架構與量測結果 70 六 結論與未來工作 78 七 參考文獻 80

    [1] R. F. Weaver, “Molecular Biology”, McGraw Hill (1999)
    [2] J.D. Watson, F. Crick, “Molecular structure of nucleic acids“, Nature, vol. 171, 737-738 (1953)
    [3] D. P. Clark, L. D. Russell, “Molecular biology -made simple and fun ”, Vienna, IL :Cache River Press, (1997)
    [4] F. Collins, and D. Galas, “A new five-year plan for the U.S. Human Genome Project”, Science, vol. 262, 43-46 (1993)
    [5] http://www.appliedbiosystems.com.tw
    [6] F. Sanger, S. Nicklen, , and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors”, Proc. Natl. Acad. Sci. USA , vol. 74, 5463-5467 (1977)
    [7] X.C. Huang, M.A. Quesada, R.A. Mathies, “DNA sequencing using capillary array electrophoresis”, Anal. Chem., vol. 64, 2149-54 (1992)
    [8] D. Meldrum, “Automation for genomics. Part Two: Sequencers, microarrays, and future trends”, Genome Res., vol. 10, 1288-303 (2000)
    [9] D.W. Deamer, D. Branton, “Characterization of Nucleic Acids by Nanopore Analysis”, Accounts of Chemical Research, Vol. 35, No.10, (2002)
    [10] J. O. Tegenfeldt, O. Bakajin, C.F. Chou, et al, “Near-field scanner for moving molecules”, Physical Review Letters, vol. 86, 1378-1381 (2001)
    [11] H.A. Beth, “Theory of diffraction by small holes”, Physical Review, vol. 66, 163-182 (1944)
    [12] E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy”, Applied Optics, vol. 25 ,1890 (1986)
    [13] H.J. Lezec, A. Degiron, E. Devaux, et al. “Beaming light from a subwavelength aperture”, Science, vol. 297, 820-822 (2002)
    [14] A. Leeuwenhoek, “Letter to the Royal Society of London”, Philosophical Transactions of the Royal Society, September (1683).
    [15] E. Hecht, “Optics”, Addison-Wesley, (2002)
    [16] J. W. Goodman, “Introduction to Fourier optics”, McGraw-Hill, (1996)
    [17] J. P. Fillard, “Near field optics and nanoscopy”, World Scientific, (1996)
    [18] A. Lewis, H. Taha, et al. “Near-field optics: from subwavelength illumination to nanometric shadowing”, NATURE BIOTECHNOLOGY , vol. 21, 1377-1386 (2003)
    [19] E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 6, 7th series:356–362 (1928)
    [20] D.W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy—image recording with resolution l/20”, Applied Physics Letters, vol. 44, 651–653 (1984)
    [21] D. W. Pohl, “Optical near-field scanning microscope”, U.S. Patent 4,604,520, (1983)
    [22] A. Lewis, M. Isaacson, A. Muray, and A. Harootunian, ” Scanning optical spectral microscopy with 500Å spatial-resolution”, Biophysical Journal, vol. 41 (1983)
    [23] S. Kawata, et al, “Near-field optics and surface plasmon polariton”, Springer (2001)
    [24] P.K. Wei, H.L. Chou, W.S. Fann, “Optical near field in nanometallic slits”, OPTICS EXPRESS , vol.10, 1418-1424 (2002)
    [25] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer (1988)
    [26] W.L. Barnes, A. Dereux, T.W. Ebbesen, “Surface plasmon subwavelength optics”, NATURE , vol.424, 824-830 (2003)
    [27] S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture”, Applied Physics Letters , vol. 85, 1098-1100 (2004)
    [28] J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces”, SCIENCE, vol.305, 847-848 (2004)
    [29] K.M. Chae, H.H. Lee, S.Y. Yim, et al. “Evolution of electromagnetic interference through nano-metallic double-slit “, OPTICS EXPRESS, vol.12, 2870-2879 (2004)
    [30] L. Xiangang, T. Ishihara, “Surface plasmon resonant interference nanolithography technique”, Applied Physics Letters , vol 84, 4780-4782 (2004)
    [31] A Taflove, “Computational electrodynamics :/the finite-difference time-domain method”, Artech House, (1995)
    [32] 宇野亨著,林振華譯, “電磁場與天線分析-使用時域有限差分法(FDTD)”, 全華(1999)
    [33] www.rsoftdesign.com
    [34] J.O. Tegenfeldt, C. Prinz, H. Cao, et al, “The dynamics of genomic-length DNA molecules in 100-nm channels”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA , vol.101 , 10979-10983(2004)
    [35] T. Tamir, et al. “Integrated optics”, Springer-Verlag, (1975)
    [36] U. Ch. Fischer, D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989)
    [37] F. Zenhausern, et al. Appl. Phys. Lett. 65, 1623 (1994)
    [38] S. Aubert, et al. “Analysis of the interferometric effect of the background light in Apertureless scanning near-field optical microscopy”, J. Opt. Soc. Am. B, vol.20,2117 (2003)
    [39] R. Hillenbrand, et al. “Complex Optical Constants on a Subwavelength Scale”, Phys. Rev. Lett. 85, 3029 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE