研究生: |
張信評 Chang, Hsin-Ping |
---|---|
論文名稱: |
於綠色溶劑超臨界二氧化碳中製作奈米複合材料 Using Supercritical CO2 as an Efficient and Green Solvent for Nanocomposite Preparations |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
李宗銘
林正良 陳志勇 葉樹開 鄭英麟 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 超臨界流體 、奈米複合材料 、石墨烯 、碳奈米管 、氣相成長碳纖維 、環氧樹脂 、聚甲基丙烯酸甲酯 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文利用綠色溶劑超臨界二氧化碳(CO2)製作奈米複合材料,內容可分為下列五個章節:
第一章緒論說明超臨界流體的基本原理、特性與技術分類,以及針對超臨界流體與二氧化碳膨脹液體於高分子材料混煉製程上的應用做一詳細說明。
第二章針對複合材料之基材相、補強相與界面相,以及複合材料成型技術等進行詳細說明。
第三章利用高分子材料吸收超臨界CO2時,高分子鏈之間的自由體積變大與糾纏現象減弱許多,此時降低高分子材料的玻璃轉換溫度、黏度與表面張力,增加了高分子材料的流動性與塑化性,在這個條件下,讓石墨烯奈米薄片(Graphene nanoplatelets,GNPs)與多壁碳奈米管(Multi-walled carbon nanotubes,MWCNTs)更均勻地分散於Epoxy基材內,藉此得到Epoxy複合材料。然而,實驗證明以超臨界CO2混煉技術製作複合材料時,GNPs與MWCNTs的分散性均優於丙酮與亞臨界CO2混煉技術,因為它的電、熱與機械性質都有明顯地被改善許多,同時也證實GNPs和MWCNTs在複合材料的導電度與熱傳導係數上有了一個明顯的協同效應。然而,丙酮混煉技術被使用來製作複合材料時,在後處理階段亦會殘留丙酮有機溶劑,已經被氣相層析質譜儀鑑定出來了。
第四章利用前述章節的超臨界CO2混煉方法之最佳操作條件,將氣相成長碳纖維(VGCFs)與GNPs更均勻地分散於聚甲基丙烯酸甲脂(Polymethylmeth-acrylate,PMMA)基材,藉此得到PMMA複合材料。實驗證明超臨界CO2混煉方法相較於NMP混煉方法而言,可以得到更優異的複合材料導電度、熱傳導係數與機械性質。經由GC/MS鑑定證實,使用超臨界CO2乾燥方法是可以有效地移除複合材料內全部殘留的NMP,相較於亞臨界CO2乾燥方法和真空乾燥方法而言,複合材料內都會殘留一定數量的NMP,這些都會影響複合材料的性質。
第五章總結前四章之內容,透過超臨界CO2綠色溶劑來製作奈米碳填充材-高分子之複合材料,除了避免過多有機溶劑造成環境污染,亦能降低複合材料製作成本,同時可達到製程強化、永續經營及環境保護之目的。
Using supercritical fluid CO2 as an efficient and green solvent in nanocomposite preparations is included in this dissertation. There are three chapters, which are organized as follows:
In Chapter 1, a detail description that introduces the basic principles, characteristics and technical classification of supercritical fluid, as well as the application of supercritical fluid and carbon dioxide expansion liquid in polymer material mixing process.
In chapter 2, a detailed description that introduces the matrix phase, reinforcing phase and interfacial phase of composite materials and the manufacturing technologies of composite materials.
In Chapter 3, the absorption of scCO2 weakens the entanglement of Epoxy chains. This increases the free volume of the Epoxy and decreases its viscosity, glass transition temperature, and surface tension. Thus the lower viscosity of Epoxy resin could help disperse GNPs (Graphene nanoplatelets) and MWCNTs (Multi-walled carbon nanotubes) uniformly in the Epoxy resin. The application of GNPs and MWCNTs had a remarkable synergetic effect on both the electrical conductivity and the thermal conductivity of Epoxy-NCFs (Nano carbon fillers) nanocomposites. The dispersion of the NCFs in the nanocomposite prepared with both the GNPs and MWCNTs was more uniform when using scCO2 mixing than it was when using either acetone mixing or subcritical CO2 mixing. When employing acetone mixing, residual organic solvent (acetone) was retained in the nanocomposite after post-heating treatment; no CO2 was detected, however, in the resulting nanocomposites prepared using scCO2 mixing, indicating the superiority of this proposed method. Our experiments reveal that scCO2 allows significant processing of an intractable, high viscosity polymer and improves the processability of Epoxy-GNPs-MWCNTs nanocomposites.
In Chapter 4, the optimum operating condition was used from the experiment of the chapter 3. VGCFs (vapor growth carbon fibers) and GNPs were dispersed in PMMA (Poly(methylmethacrylate)) matrix more uniformly to obtain PMMA-VGCFs-GNPs nanocomposites. Experiments show that supercritical CO2 mixing method compared to the NMP mixing method, the electrical and thermal conductivities of the nanocomposites both improved, relative to the values obtained after NMP mixing and for neat PMMA. In addition, the results of GC/MS confirmed that the supercritical CO2 drying method can effectively remove all the residual NMP in the composite material, compared with the subcritical CO2 drying method and vacuum drying method, the composite material will remain a certain amount of NMP, these will affect the composite material properties.
In Chapter 5, a summary of previous chapters was provided. With the encouraging results in this study, it is believed that applying green solvents compressed CO2 and manufacturing of polymer-NCFs manocomposoties could be very promising. It could also meet the purposes of process intensification, sustainable development and environmental protection.
[1] Arai, Y.; Sako, T. and Takebayashi, Y. Supercritical Fluids Molecular Interactions, Phyysical Properties, and New Applications, Springer-Verlag Berlin Heidelberg, New York, 2002.
[2] Reid RC, Prausnitz JM, Polling BE (1987) The Properties of gases and liquids, 4th edn. McGraw-Hill Book Company, USA.
[3] Edit Székely. Supercritical Fluid Extraction, Budapest University of Technology and Economics, 2007.
[4] 彭英利, 馬承愚. (2005). 超臨界流體技術應用手冊. 化學工業出版社.
[5] J.M. Murphy, C. Erkey, Thermodynamics of Extraction of Copper(II) from Aqueous Solutions by Chelation in Supercritical Carbon Dioxide, Environmental Science & Technology, 31 (1997) 1674-1679.
[6] P.G. Jessop, Searching for green solvents, Green Chemistry, 13 (2011) 1391-1398.
[7] S. Bachu, Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change, Environmental Geology, 44 (2003) 277-289.
[8] R.S. Oakes, A.A. Clifford, C.M. Rayner, The use of supercritical fluids in synthetic organic chemistry, Journal of the Chemical Society, Perkin Transactions 1, (2001) 917-941.
[9] A.R. Berens, G.S. Huvard, R.W. Korsmeyer, F.W. Kunig, Application of compressed carbon dioxide in the incorporation of additives into polymers, Journal of Applied Polymer Science, 46 (1992) 231-242.
[10] J.M. DeSimone, Z. Guan, C.S. Elsbernd, Synthesis of Fluoropolymers in Supercritical Carbon Dioxide, Science, 257 (1992) 945-947.
[11] M.R. Clark, J.M. DeSimone, Cationic Polymerization of Vinyl and Cyclic Ethers in Supercritical and Liquid Carbon Dioxide, Macromolecules, 28 (1995) 3002-3004.
[12] 楊斌, 唐琦琦, 週持興. (2005). 利用超臨界流體製備功能高分子材料. 全國高分子學術論文報告會.
[13] Y.-T. Shieh, J.-H. Su, G. Manivannan, P.H.C. Lee, S.P. Sawan, W. Dale Spall, Interaction of supercritical carbon dioxide with polymers. I. Crystalline polymers, Journal of Applied Polymer Science, 59 (1996) 695-705.
[14] Mizutani, H.; Suzuki, T.; Kihara, S. I. and Ohshima, M. “Infusion to Polymer Surface from Liquid Phase of Carbon Dioxide and Solute Mixture” International Symposium on Supercritical Fluids, ISSF 2005, 1 May, Orlando, FL, USA.
[15] D.L. Tomasko, H. Li, D. Liu, X. Han, M.J. Wingert, L.J. Lee, K.W. Koelling, A Review of CO2 Applications in the Processing of Polymers, Industrial & Engineering Chemistry Research, 42 (2003) 6431-6456.
[16] Y.-T. Shieh, Y.-G. Lin, Equilibrium solubility of CO2 in rubbery EVA over a wide pressure range: effects of carbonyl group content and crystallinity, Polymer, 43 (2002) 1849-1856.
[17] Y. Marcus, Are solubility parameters relevant to supercritical fluids?, The Journal of Supercritical Fluids, 38 (2006) 7-12.
[18] Y.-T. Shieh, J.-H. Su, G. Manivannan, P.H.C. Lee, S.P. Sawan, W. Dale Spall, Interaction of supercritical carbon dioxide with polymers. II. Amorphous polymers, Journal of Applied Polymer Science, 59 (1996) 707-717.
[19] Mizutani, H.; Shikuma, H.; Kihara, S. I. and Ohshima M. “CO2 Assisted Infusion of Carbon Nanotube into Thermoplastic Polymer Surface” Japan-Korea Joint Symposium, 2004, Ohita, Japan.
[20] J. Ma, H. Deng, T. Peijs, Processing of Poly(propylene)/Carbon Nanotube Composites using scCO2-Assisted Mixing, Macromolecular Materials and Engineering, 295 (2010) 566-574.
[21] J. Ma, E. Bilotti, T. Peijs, J.A. Darr, Preparation of polypropylene/sepiolite nanocomposites using supercritical CO2 assisted mixing, European Polymer Journal, 43 (2007) 4931-4939.
[22] C. Chen, J. Samaniuk, D.G. Baird, G. Devoux, M. Zhang, R.B. Moore, J.P. Quigley, The preparation of nano-clay/polypropylene composite materials with improved properties using supercritical carbon dioxide and a sequential mixing technique, Polymer, 53 (2012) 1373-1382.
[23] C. Chen, M. Bortner, J.P. Quigley, D.G. Baird, Using supercritical carbon dioxide in preparing carbon nanotube nanocomposite: Improved dispersion and mechanical properties, Polymer Composites, 33 (2012) 1033-1043.
[24] 顧宜(2002). 複合材料.
[25] https://nanotubemag.com/composites-in-flight/
[26] http://artquill.blogspot.tw/2013/08/general-properties-of-fiber-polymers.html
[27] 王春山. (1995). 環氧樹脂簡介與最近的發展(一)~(四). 化工技術.
[28] 馬振基, 趙玨. (2005). 高分子複合材料下冊 製程、檢測與應用.
[29] 王德中. (2001). 環氧樹脂生產與應用第二版.
[30] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater, 6 (2007) 183-191.
[31] H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, The Journal of Physical Chemistry B, 110 (2006) 8535-8539.
[32] Z. Osváth, A. Darabont, P. Nemes-Incze, E. Horváth, Z.E. Horváth, L.P. Biró, Graphene layers from thermal oxidation of exfoliated graphite plates, Carbon, 45 (2007) 3022-3026.
[33] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, Journal of Materials Chemistry, 15 (2005) 974-978.
[34] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[35] E.H.L. Falcao, R.G. Blair, J.J. Mack, L.M. Viculis, C.-W. Kwon, M. Bendikov, R.B. Kaner, B.S. Dunn, F. Wudl, Microwave exfoliation of a graphite intercalation compound, Carbon, 45 (2007) 1367-1369.
[36] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
[37] G.G. Tibbetts, G.L. Doll, D.W. Gorkiewicz, J.J. Moleski, T.A. Perry, C.J. Dasch, M.J. Balogh, Physical properties of vapor-grown carbon fibers, Carbon, 31 (1993) 1039-1047.
[38] J. L. Figueiredo, C. A. Bernardo, “Carbon fibers, filaments, and composites”, Dordrecht ; Boston : Kluwer Academic Pub., p.95-117, 1990.
[39] T.E. Chang, L.R. Jensen, A. Kisliuk, R.B. Pipes, R. Pyrz, A.P. Sokolov, Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite, Polymer, 46 (2005) 439-444.
[40] B.P. Grady, F. Pompeo, R.L. Shambaugh, D.E. Resasco, Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, 106 (2002) 5852-5858.
[41] M.S.P. Shaffer, A.H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, Advanced Materials, 11 (1999) 937-941.
[42] R. Krishnamoorti, J. Ren, A.S. Silva, Shear response of layered silicate nanocomposites, The Journal of Chemical Physics, 114 (2001) 4968-4973.
[43] S. Yang, H. Yuan, J. Luo, S. Chen, Z. Ge, S. Chen, J. Zheng, Facile preparation of shape memory polyurethanes by polyurethanes blending, Journal of Applied Polymer Science, 130 (2013) 4047-4053.
[44] L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Applied Physics Letters, 73 (1998) 1197-1199.
[45] S. Badaire, P. Poulin, M. Maugey, C. Zakri, In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering, Langmuir, 20 (2004) 10367-10370.
[46] M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, 297 (2002) 593-596.
[47] P.R. Sundararajan, S. Singh, M. Moniruzzaman, Surfactant-Induced Crystallization of Polycarbonate, Macromolecules, 37 (2004) 10208-10211.
[48] L. Lu-Qi, H.D. Wagner, A comparison of the mechanical strength and stiffness of MWNT-PMMA and MWNT-epoxy nanocomposites, Composite Interfaces, 14 (2007) 285-297.
[49] M. Lebrón-Colón, M.A. Meador, J.R. Gaier, F. Solá, D.A. Scheiman, L.S. McCorkle, Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes, ACS Applied Materials & Interfaces, 2 (2010) 669-676.
[50] Z. Hu, G. Chen, Aqueous dispersions of layered double hydroxide/polyacrylamide nanocomposites: preparation and rheology, Journal of Materials Chemistry A, 2 (2014) 13593-13601.
[51] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam, Journal of Polymer Science Part A: Polymer Chemistry, 31 (1993) 983-986.
[52] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid, Journal of Materials Research, 8 (2011) 1179-1184.
[53] Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu, Study on poly(methyl methacrylate)/carbon nanotube composites, Materials Science and Engineering: A, 271 (1999) 395-400.
[54] J. Gao, M.E. Itkis, A. Yu, E. Bekyarova, B. Zhao, R.C. Haddon, Continuous Spinning of a Single-Walled Carbon Nanotube−Nylon Composite Fiber, Journal of the American Chemical Society, 127 (2005) 3847-3854.
[55] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44 (2006) 1624-1652.
[56] K. Fu, W. Huang, Y. Lin, L.A. Riddle, D.L. Carroll, Y.-P. Sun, Defunctionalization of Functionalized Carbon Nanotubes, Nano Letters, 1 (2001) 439-441.
[57] G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C.Y. Ryu, P.M. Ajayan, Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites, Journal of the American Chemical Society, 125 (2003) 9258-9259.
[58] S. Qin, D. Qin, W.T. Ford, D.E. Resasco, J.E. Herrera, Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate, Journal of the American Chemical Society, 126 (2004) 170-176.
[59] R.A. Vaia, H. Ishii, E.P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chemistry of Materials, 5 (1993) 1694-1696.
[60] E.C. Lee, D.F. Mielewski, R.J. Baird, Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication, Polymer Engineering & Science, 44 (2004) 1773-1782.
[61] Q. Zhang, Q. Fu, L. Jiang, Y. Lei, Preparation and properties of polypropylene/montmorillonite layered nanocomposites, Polymer International, 49 (2000) 1561-1564.
[62] C. Tu, K. Nagata, S. Yan, Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene, Polymer Bulletin, 74 (2017) 1237-1252.
[63] K. Nevalainen, J. Vuorinen, V. Villman, R. Suihkonen, P. Järvelä, J. Sundelin, T. Lepistö, Characterization of twin-screw-extruder-compounded polycarbonate nanoclay composites, Polymer Engineering & Science, 49 (2009) 631-640.
[64] R. Andrews, D. Jacques, M. Minot, T. Rantell, Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing, Macromolecular Materials and Engineering, 287 (2002) 395-403.
[65] P. Pötschke, A.R. Bhattacharyya, A. Janke, H. Goering, Melt mixing of polycarbonate/multi-wall carbon nanotube composites, Composite Interfaces, 10 (2003) 389-404.
[66] S.-Y. Yang, C.-C.M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, K.-C. Chiou, Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, 48 (2010) 592-603.
[67] K.A. Worsley, I. Kalinina, E. Bekyarova, R.C. Haddon, Functionalization and Dissolution of Nitric Acid Treated Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, 131 (2009) 18153-18158.
[68] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46 (2008) 833-840.
[69] S.-H. Liao, C.-Y. Yen, C.-H. Hung, C.-C. Weng, M.-C. Tsai, Y.-F. Lin, C.-C.M. Ma, C. Pan, A. Su, One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells, Journal of Materials Chemistry, 18 (2008) 3993-4002.
[70] E. Moaseri, M. Maghrebi, M. Baniadam, Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: A microwave-assisted approach in functionalization of carbon fiber via diamines, Materials & Design, 55 (2014) 644-652.
[71] Q. Peng, Y. Li, X. He, H. Lv, P. Hu, Y. Shang, C. Wang, R. Wang, T. Sritharan, S. Du, Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization, Composites Science and Technology, 74 (2013) 37-42.
[72] A.M. Shanmugharaj, J.H. Yoon, W.J. Yang, S.H. Ryu, Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths, Journal of Colloid and Interface Science, 401 (2013) 148-154.
[73] Y.-Y. Fan, H.-M. Cheng, Y.-L. Wei, G. Su, Z.-H. Shen, Tailoring the diameters of vapor-grown carbon nanofibers, Carbon, 38 (2000) 921-927.
[74] X. Zhang, O. Alloul, Q. He, J. Zhu, M.J. Verde, Y. Li, S. Wei, Z. Guo, Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets, Polymer, 54 (2013) 3594-3604.
[75] S.B. Jagtap, V.S. Rao, S. Barman, D. Ratna, Nanocomposites based on epoxy resin and organoclay functionalized with a reactive modifier having structural similarity with the curing agent, Polymer, 63 (2015) 41-51.
[76] M. Wang, X. Fan, W. Thitsartarn, C. He, Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses, Polymer, 58 (2015) 43-52.
[77] S. Wu, R.B. Ladani, J. Zhang, A.J. Kinloch, Z. Zhao, J. Ma, X. Zhang, A.P. Mouritz, K. Ghorbani, C.H. Wang, Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field, Polymer, 68 (2015) 25-34.
[78] S. Zeng, C. Reyes, J. Liu, P.A. Rodgers, S.H. Wentworth, L. Sun, Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications, Polymer, 55 (2014) 6519-6528.
[79] P. Zhang, Q. Li, Y. Xuan, Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes, Composites Part A: Applied Science and Manufacturing, 57 (2014) 1-7.
[80] F. Gardea, D.C. Lagoudas, Characterization of electrical and thermal properties of carbon nanotube/epoxy composites, Composites Part B: Engineering, 56 (2014) 611-620.
[81] C.M. Becker, A.D. Gabbardo, F. Wypych, S.C. Amico, Mechanical and flame-retardant properties of epoxy/Mg–Al LDH composites, Composites Part A: Applied Science and Manufacturing, 42 (2011) 196-202.
[82] S. Zainuddin, A. Fahim, T. Arifin, M.V. Hosur, M.M. Rahman, J.D. Tyson, S. Jeelani, Optimization of mechanical and thermo-mechanical properties of epoxy and E-glass/epoxy composites using NH2-MWCNTs, acetone solvent and combined dispersion methods, Composite Structures, 110 (2014) 39-50.
[83] W.-J. Lee, S.-E. Lee, C.-G. Kim, The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding, Composite Structures, 76 (2006) 406-410.
[84] J.J. Watkins, T.J. McCarthy, Polymerization in Supercritical Fluid-Swollen Polymers: A New Route to Polymer Blends, Macromolecules, 27 (1994) 4845-4847.
[85] E. Kung, A.J. Lesser, T.J. McCarthy, Morphology and Mechanical Performance of Polystyrene/Polyethylene Composites Prepared in Supercritical Carbon Dioxide, Macromolecules, 31 (1998) 4160-4169.
[86] R. Zhu, T. Hoshi, Y. Chishima, Y. Muroga, T. Hagiwara, S. Yano, T. Sawaguchi, Microstructure and Mechanical Properties of Polypropylene/Poly(methyl methacrylate) Nanocomposite Prepared Using Supercritical Carbon Dioxide, Macromolecules, 44 (2011) 6103-6112.
[87] M. Tang, T.-Y. Wen, T.-B. Du, Y.-P. Chen, Synthesis of electrically conductive polypyrrole–polystyrene composites using supercritical carbon dioxide: I. Effects of the blending conditions, European Polymer Journal, 39 (2003) 143-149.
[88] T. Hoshi, T. Sawaguchi, R. Matsuno, T. Konno, M. Takai, K. Ishihara, Polymer composite biomaterials from polyethylene/poly(vinyl acetate) prepared in supercritical carbon dioxide and their bulk and surface characterization, The Journal of Supercritical Fluids, 44 (2008) 391-399.
[89] M. Garcia-Leiner, A.J. Lesser, CO2-assisted polymer processing: A new alternative for intractable polymers, Journal of Applied Polymer Science, 93 (2004) 1501-1511.
[90] P. Eteläaho, K. Nevalainen, R. Suihkonen, J. Vuorinen, P. Järvelä, Effects of two different maleic anhydride-modified adhesion promoters (PP-g-MA) on the structure and mechanical properties of nanofilled polyolefins, Journal of Applied Polymer Science, 114 (2009) 978-992.
[91] A. Chafidz, M.-h. Ali, R. Elleithy, Morphological, thermal, rheological, and mechanical properties of polypropylene-nanoclay composites prepared from masterbatch in a twin screw extruder, Journal of Materials Science, 46 (2011) 6075-6086.
[92] Q.T. Nguyen, D.G. Baird, An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide, Polymer, 48 (2007) 6923-6933.
[93] S. Horsch, G. Serhatkulu, E. Gulari, R.M. Kannan, Supercritical CO2 dispersion of nano-clays and clay/polymer nanocomposites, Polymer, 47 (2006) 7485-7496.
[94] G. Armstrong, K. Fortune, A comparative study of polyethylene oxide/nanoclay composite preparation via supercritical carbon dioxide and melt processing, Polymer Bulletin, 59 (2007) 439-446.
[95] A.S. Zerda, T.C. Caskey, A.J. Lesser, Highly Concentrated, Intercalated Silicate Nanocomposites: Synthesis and Characterization, Macromolecules, 36 (2003) 1603-1608.
[96] Q. Zhao, E.T. Samulski, In Situ Polymerization of Poly(methyl methacrylate)/Clay Nanocomposites in Supercritical Carbon Dioxide, Macromolecules, 38 (2005) 7967-7971.
[97] M.D. Hossain, W.S. Kim, H.S. Hwang, K.T. Lim, Role of water on PMMA/clay nanocomposites synthesized by in situ polymerization in ethanol and supercritical carbon dioxide, Journal of Colloid and Interface Science, 336 (2009) 443-448.
[98] Q. Zhao, E.T. Samulski, A comparative study of poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared in supercritical carbon dioxide, Polymer, 47 (2006) 663-671.
[99] J. Li, Q. Xu, Q. Peng, M. Pang, S. He, C. Zhu, Supercritical CO2-assisted synthesis of polystyrene/clay nanocomposites via in situ intercalative polymerization, Journal of Applied Polymer Science, 100 (2006) 671-676.
[100] C. Yan, L. Ma, J. Yang, Preparation of polystyrene/montmorillonite nanocomposites in supercritical carbon dioxide, Journal of Applied Polymer Science, 98 (2005) 22-28.
[101] L. Urbanczyk, C. Calberg, F. Stassin, M. Alexandre, R. Jérôme, C. Jérôme, C. Detrembleur, Synthesis of PCL/clay masterbatches in supercritical carbon dioxide, Polymer, 49 (2008) 3979-3986.
[102] L. Urbanczyk, F. Ngoundjo, M. Alexandre, C. Jérôme, C. Detrembleur, C. Calberg, Synthesis of polylactide/clay nanocomposites by in situ intercalative polymerization in supercritical carbon dioxide, European Polymer Journal, 45 (2009) 643-648.
[103] L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang, Y. Huang, Y. Ma, Y. Chen, Multichannel and Repeatable Self-Healing of Mechanical Enhanced Graphene-Thermoplastic Polyurethane Composites, Advanced Materials, 25 (2013) 2224-2228.
[104] Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, Y. Chen, The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites, Carbon, 45 (2007) 1614-1621.
[105] http://graphene-supermarket.com/.
[106] http://www.nanoamor-europe.com/.
[107] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Physical Chemistry Chemical Physics, 9 (2007) 1276-1290.
[108] M.S. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Defect characterization in graphene and carbon nanotubes using Raman spectroscopy, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 368 (2010) 5355-5377.
[109] P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films, Materials Chemistry and Physics, 96 (2006) 253-277.
[110] H. Kim, C.W. Macosko, Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites, Macromolecules, 41 (2008) 3317-3327.
[111] H. Kim, C.W. Macosko, Processing-property relationships of polycarbonate/graphene composites, Polymer, 50 (2009) 3797-3809.
[112] R. Serna-Guerrero, Y. Belmabkhout, A. Sayari, Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study, Chemical Engineering Science, 65 (2010) 4166-4172.
[113] A. Setameteekul, A. Aroonwilas, A. Veawab, Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes, Separation and Purification Technology, 64 (2008) 16-25.
[114] C.-H. Yu, H.-H. Cheng, C.-S. Tan, CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed, International Journal of Greenhouse Gas Control, 9 (2012) 136-147.
[115] S. Sundarram, Y.H. Kim, W. Li, 4 - Preparation and characterization of poly(ether imide) nanocomposites and nanocomposite foams A2 - Mittal, Vikas, in: Manufacturing of Nanocomposites with Engineering Plastics, Woodhead Publishing, 2015, pp. 61-85.
[116] S.-Y. Yang, W.-N. Lin, Y.-L. Huang, H.-W. Tien, J.-Y. Wang, C.-C.M. Ma, S.-M. Li, Y.-S. Wang, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49 (2011) 793-803.
[117] F. Du, J.E. Fischer, K.I. Winey, Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability, Journal of Polymer Science Part B: Polymer Physics, 41 (2003) 3333-3338.
[118] S. Jiang, Z. Gui, C. Bao, K. Dai, X. Wang, K. Zhou, Y. Shi, S. Lo, Y. Hu, Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending, Chemical Engineering Journal, 226 (2013) 326-335.
[119] C. Zeng, N. Hossieny, C. Zhang, B. Wang, S.M. Walsh, Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams, Composites Science and Technology, 82 (2013) 29-37.
[120] A. Zanotto, A.S. Luyt, A. Spinella, E. Caponetti, Improvement of interaction in and properties of PMMA-MWNT nanocomposites through microwave assisted acid treatment of MWNT, European Polymer Journal, 49 (2013) 61-69.
[121] M. Lahelin, M. Annala, A. Nykänen, J. Ruokolainen, J. Seppälä, In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites, Composites Science and Technology, 71 (2011) 900-907.
[122] C. McClory, T. McNally, M. Baxendale, P. Pötschke, W. Blau, M. Ruether, Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality, European Polymer Journal, 46 (2010) 854-868.
[123] C. Vallés, I.A. Kinloch, R.J. Young, N.R. Wilson, J.P. Rourke, Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites, Composites Science and Technology, 88 (2013) 158-164.
[124] C. Özdilek, S. Bose, J. Leys, J.W. Seo, M. Wübbenhorst, P. Moldenaers, Thermally induced phase separation in PαMSAN/PMMA blends in presence of functionalized multiwall carbon nanotubes: Rheology, morphology and electrical conductivity, Polymer, 52 (2011) 4480-4489.
[125] Y. Haldorai, J.-J. Shim, K.T. Lim, Synthesis of polymer–inorganic filler nanocomposites in supercritical CO2, The Journal of Supercritical Fluids, 71 (2012) 45-63.
[126] J.Y. Jang, M.S. Kim, H.M. Jeong, C.M. Shin, Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator, Composites Science and Technology, 69 (2009) 186-191.
[127] P.H.d.S.L. Coelho, M.S. Marchesin, A.R. Morales, J.R. Bartoli, Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites, Materials Research, 17 (2014) 127-132.
[128] Z. Zhou, S. Wang, L. Lu, Y. Zhang, Y. Zhang, Preparation and rheological characterization of poly(methyl methacrylate)/functionalized multi-walled carbon nanotubes composites, Composites Science and Technology, 67 (2007) 1861-1869.
[129] S.J. Park, S.T. Lim, M.S. Cho, H.M. Kim, J. Joo, H.J. Choi, Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite, Current Applied Physics, 5 (2005) 302-304.
[130] M. Avella, M.E. Errico, G. Gentile, PMMA Based Nanocomposites Filled with Modified CaCO3 Nanoparticles, Macromolecular Symposia, 247 (2007) 140-146.
[131] J. Wang, Z. Shi, Y. Ge, Y. Wang, J. Fan, J. Yin, Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization, Materials Chemistry and Physics, 136 (2012) 43-50.
[132] K.-S. Kim, S.-J. Park, Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites, Journal of Solid State Chemistry, 184 (2011) 3021-3027.
[133] Y. Wang, Z. Shi, J. Yin, Kevlar oligomer functionalized graphene for polymer composites, Polymer, 52 (2011) 3661-3670.
[134] X. Zeng, J. Yang, W. Yuan, Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method, European Polymer Journal, 48 (2012) 1674-1682.
[135] T. Kuila, S. Bose, P. Khanra, N.H. Kim, K.Y. Rhee, J.H. Lee, Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites, Composites Part A: Applied Science and Manufacturing, 42 (2011) 1856-1861.
[136] Y.-L. Li, C.-F. Kuan, C.-H. Chen, H.-C. Kuan, M.-C. Yip, S.-L. Chiu, C.-L. Chiang, Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites, Materials Chemistry and Physics, 134 (2012) 677-685.
[137] M. Shahzamani, R. Bagheri, M. Masoomi, M. Haghgoo, A. Dourani, Effect of drying method on the structure and porous texture of silica-polybutadiene hybrid gels: Supercritical vs. ambient pressure drying, Journal of Non-Crystalline Solids, 460 (2017) 119-124.
[138] E.-Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers, Journal of Materials Chemistry, 20 (2010) 1907-1912.
[139] P. Gong, Z. Wang, J. Wang, H. Wang, Z. Li, Z. Fan, Y. Xu, X. Han, S. Yang, One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage, Journal of Materials Chemistry, 22 (2012) 16950-16956.
[140] W. Zhao, F. Wu, H. Wu, G. Chen, Preparation of Colloidal Dispersions of Graphene Sheets in Organic Solvents by Using Ball Milling, Journal of Nanomaterials, 2010 (2010) 5.
[141] M.J. Lazzaroni, D. Bush, J.S. Brown, C.A. Eckert, High-Pressure Vapor−Liquid Equilbria of Some Carbon Dioxide + Organic Binary Systems, Journal of Chemical & Engineering Data, 50 (2005) 60-65.
[142] R. Rajasingam, L. Lioe, Q.T. Pham, F.P. Lucien, Solubility of carbon dioxide in dimethylsulfoxide and N-methyl-2-pyrrolidone at elevated pressure, The Journal of Supercritical Fluids, 31 (2004) 227-234.
[143] G.D. Saravacos, Effect of temperature on viscosity of fruit juices and purees, Journal of Food Science, 35 (1970) 122-125.
[144] H.-B. Zhang, W.-G. Zheng, Q. Yan, Z.-G. Jiang, Z.-Z. Yu, The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites, Carbon, 50 (2012) 5117-5125.
[145] M. Iguchi, Y. Hiraga, K. Kasuya, T.M. Aida, M. Watanabe, Y. Sato, R.L. Smith, Viscosity and density of poly(ethylene glycol) and its solution with carbon dioxide at 353.2K and 373.2K at pressures up to 15MPa, The Journal of Supercritical Fluids, 97 (2015) 63-73.
[146] H.M.N.T. Avelino, J.M.N.A. Fareleira, D. Gourgouillon, J.M. Igreja, M. Nunes da Ponte, Viscosity of poly(ethyleneglycol) 200 [PEG 200] saturated with supercritical carbon dioxide, The Journal of Supercritical Fluids, 128 (2017) 300-307.
[147] Y.-H. Kim, W. Li, Multifunctional polyetherimide nanocomposite foam, Journal of Cellular Plastics, 49 (2013) 131-145.
[148] W.-T. Hong, N.-H. Tai, Investigations on the thermal conductivity of composites reinforced with carbon nanotubes, Diamond and Related Materials, 17 (2008) 1577-1581.
[149] T. Kashiwagi, F. Du, J.F. Douglas, K.I. Winey, R.H. Harris, J.R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites, Nat Mater, 4 (2005) 928-933.
[150] S.-M. Yuen, C.-C.M. Ma, C.-L. Chiang, J.-A. Chang, S.-W. Huang, S.-C. Chen, C.-Y. Chuang, C.-C. Yang, M.-H. Wei, Silane-modified MWCNT/PMMA composites – Preparation, electrical resistivity, thermal conductivity and thermal stability, Composites Part A: Applied Science and Manufacturing, 38 (2007) 2527-2535.
[151] P.A. Ajibade, J.Z. Mbese, Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate) Nanocomposites, International Journal of Polymer Science, 2014 (2014) 8.
[152] L. Valentini, J. Biagiotti, J.M. Kenny, S. Santucci, Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene, Journal of Applied Polymer Science, 87 (2003) 708-713.