研究生: |
鄒佳芳 Chia-Fang Tsou |
---|---|
論文名稱: |
在超凸度量空間上的推廣型變分不等式定理和大中取小不等式定理 Generalized Variational Inequality Theorems and Minimax Inequality Theorems on Hyperconvex Metric Spaces |
指導教授: | 張東輝 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 18 |
中文關鍵詞: | 超凸度量空間 、KKM(X,Y) 、度量化-擬凹函數 、變分不等式 、大中取小不等式 |
外文關鍵詞: | hyperconvex metric space, KKM(X,Y), metrically-quasi-concave, variational inequality, minimax inequality |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們利用超凸度量空間的性質證明了可允許集的交集性質。利用這個性質,我們證得一些推廣型的變分不等式。我們也證明了四個實值函數,在某些假設條件之下的一些大中取小不等式的存在性定理。
In this paper, we use the property of hyperconvex metric space to establish an intersection property about a family of admissible sets. Applying this intersection property we establish some generalized variational inequality theorems. We also establish some minimax inequality theorems concerning four real-valued mappings under some assumptions.
REFERENCES
[1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052.
[2] Q. H. Ansari, A. Idzik, and J. C. Yao, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal. 15(2000), 191-202.
[3] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439.
[4] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989.
[5] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
[6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[7] X. P. Ding and J. Y. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34(6)(2003), 973-990.
[8] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Ana, to appear.
[9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310.
[10] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984),519-537.
[11] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
[12] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608.
[13] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117(1)(2003), 121-137.
[14] L. J. Lin and H. I. Chen, Coincidence theorems for family of multimaps and their applications to equilibrium problems, J. Abstr. Anal. 5(2003), 295-305.
[15] L. J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003), 408-418.
[16] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122.
[17] J. T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321(2006), 862-866.
[18] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37(1999), 467-472.
[19] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[20] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
[21] G. Tina and J. Zhou, Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econom. 24(1995), 281-303.
[22] Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52(2003), 445-453.