簡易檢索 / 詳目顯示

研究生: 鄒佳芳
Chia-Fang Tsou
論文名稱: 在超凸度量空間上的推廣型變分不等式定理和大中取小不等式定理
Generalized Variational Inequality Theorems and Minimax Inequality Theorems on Hyperconvex Metric Spaces
指導教授: 張東輝
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 18
中文關鍵詞: 超凸度量空間KKM(X,Y)度量化-擬凹函數變分不等式大中取小不等式
外文關鍵詞: hyperconvex metric space, KKM(X,Y), metrically-quasi-concave, variational inequality, minimax inequality
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用超凸度量空間的性質證明了可允許集的交集性質。利用這個性質,我們證得一些推廣型的變分不等式。我們也證明了四個實值函數,在某些假設條件之下的一些大中取小不等式的存在性定理。


    In this paper, we use the property of hyperconvex metric space to establish an intersection property about a family of admissible sets. Applying this intersection property we establish some generalized variational inequality theorems. We also establish some minimax inequality theorems concerning four real-valued mappings under some assumptions.

    CONTENTS 1.INTRODUCTION--------------------------------------------05 2.PRELIMINARIES-------------------------------------------06 3.MAIN RESULTS--------------------------------------------10 4.REFERENCES----------------------------------------------17

    REFERENCES
    [1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052.
    [2] Q. H. Ansari, A. Idzik, and J. C. Yao, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal. 15(2000), 191-202.
    [3] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439.
    [4] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989.
    [5] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
    [6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [7] X. P. Ding and J. Y. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34(6)(2003), 973-990.
    [8] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Ana, to appear.
    [9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310.
    [10] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984),519-537.
    [11] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
    [12] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608.
    [13] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117(1)(2003), 121-137.
    [14] L. J. Lin and H. I. Chen, Coincidence theorems for family of multimaps and their applications to equilibrium problems, J. Abstr. Anal. 5(2003), 295-305.
    [15] L. J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003), 408-418.
    [16] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122.
    [17] J. T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321(2006), 862-866.
    [18] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37(1999), 467-472.
    [19] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
    [20] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
    [21] G. Tina and J. Zhou, Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econom. 24(1995), 281-303.
    [22] Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52(2003), 445-453.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE