研究生: |
鮑國峰 Kuo Feng Pao |
---|---|
論文名稱: |
磁旋返波振盪器軸向模式作用之研究 Axial Mode Interaction in the Gyrotron Backward-Wave Oscillator |
指導教授: |
朱國瑞
Kwo Ray Chu 張存續 Tsun Hsu Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 磁旋管 、磁旋返波振盪器 、自我調制 、模式競爭 、粒子模擬 、非線性現象 |
外文關鍵詞: | Gyrotron, Gyro-BWO, Self modulation, Mode competition, Particle-in-cell simulation, Nonlinear behavior |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The gyrotron backward-wave oscillator (gyro-BWO) is a coherent radiation sources featuring continuous frequency tunability. Oscillations build up via an internal feedback
loop composed of a forward moving electron beam and backward propagating waves. Recent studies indicate that stationary of non-stationary states appear alternatively as
the beam current rises. Multi-mode competition has been suggested as a possible cause due to the excitation of high-order-axial modes (HOAMs) involving tapered interaction
structures. However, unbalanced beam energy deposition is also known to result in self-modulation of a single mode. Therefore, an in-depth understanding of axial mode interactions in the gyro-BWO is of critical importance. This dissertation thus devotes to the formation of axial modes and the causes of the single mode self-modulation behavior (Chapter 3) and the multi-mode competition behavior (Chapter 4 and 5).
In the discussion of single mode self-modulation behavior, it's indicated that the occurrence of non-stationary state is caused, at first, by the very nature of dynamic energy flow from downstream end as the oscillation transitioning from transient state to saturated state. This suggests, at high Ib, the subsequent long-lasting beam/field energy modulation in an contracted feedback loop with a modulation frequency. According to this, the increase of modulation frequency as rising the Ib could be regarded as a result of the further contraction of the feedback loop (Leff) which suggests shorter modulating time and hence higher modulation frequency.
As for the discussion of the mode competition behavior, the field structures of axial modes are examined in the perspective of favorable field profile which has the advan-
tage of early interaction with the electron beam. As a result, and in sharp contrast to the behavior of the familiar resonator-based gyrotron oscillator, particle simulations of the gyro-BWO reveal a radically di®erent pattern of mode competition in which a fast-growing and well-established mode is subsequently suppressed by a later-starting mode with a more favorable field profile. This is verified in a Ka-band experiment and the interaction dynamics are elucidated with a time-frequency analysis.
[1] M. J. Arman, IEEE Trans. Plasma Sci. 26, 693 (1998).
[2] L. R. Barnett, L. H. Chang, H.Y. Chen, K. R. Chu, W. K. Lau, and C. C. Tu, Phys.
Rev. Lett. 63, 1062, (1989).
[3] M. A. Basten, W. C. Guss, K. E. Kreischer, R. J. Temkin, and M. Caplan, Int. J. Infrared Millim. Waves 16, 889 (1995).
[4] B. P. Bezruchko and S. P. Kuznetsov, Izv. Vyssh. Uchebn. Zaved. Radio‾z. 21, 1053 (1978). [Radiophys. Quantum Electron. 21, 739 (1978)].
[5] J. M. Baird and W. Lawson,\Magnetron injection gun (MIG) design for gyrotron applications," Int. J. Electron. 61, 953-967 (1986).
[6] C. K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation, Institue of Physics Publishing, Philadelphia, 2002.
[7] B. Boashash, Time-Frequency Signal Analysis, Wiley Halsted Press, New York, 1992, Chap. 1.
[8] V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, M. I. Petelin, and P. S. Strlkov, Int. J. Electron. 51, 541 (1981).
[9] T. H. Chang, L. R. Barnett, K. R. Chu, F. Tai, and C. L. Hsu, Rev. Sci. Instrum, 70, 1530, (1999).
[10] T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, Phys. Rev. Lett. 87, 064802 (2001).
[11] M. Caplan, in Conference Digest: 12th International Conference on Infrared Millimeter Waves, p. 276 (1987).
[12] S. H. Chen, K. R. Chu, and T. H. Chang, Phys. Rev. Lett. 85, 2633 (2000).
[13] S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan, and K. R. Chu, Phys. Rev. Lett. 89, 268303 (2002).
[14] M. Chorodow and C. Susskind, Fundamentals of Microwave Electronics (McGraw-Hill, New York, 1964), Chap. 7.
[15] K. R. Chu, \Lecture notes for the nonlinear formulation for gro-TWT and CARM amplifier"
[16] K. R. Chu and J.L. Hirsh‾eld, Phys. of Fluids 21, 461 (1978).
[17] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, Phys. Rev. Lett. 81, 4760 (1998).
[18] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, IEEE Trans. Plasma. Sci. 27, 391 (1999)
[19] K. R. Chu, Rev. Modern Phys. 76, 489 (2004).
[20] L. Cohen, "Time-frequency analysis," Prentice Hall, Englewood Cliffs, NJ (1995).
[21] L. Debnath,"Wavelet Transforms and Time-frequency Signal Analysis," Birkhauser Boston, Boston, Chap. 11 (2000).
[22] A. Y. Dmitriev, D. I. Trubetskov, and A. P. Chetverikov, Izv. Vyssh. Uchebn. Zaved. Radio‾z. 34, 595 (1991). [Radiophys. Quantum Electron. 34, 502 (1991)].
[23] V. S. Ergakov and M. A. Moiseev, "To the theory of sychronization of cyclotron resonance generator oscillations by an external signal," Izv. VUZov Radio‾z. 18, 89 (1975).
[24] A. W. Fli°et and W. M. Manheiner, Phys. Rev. A 39, 3432 (1989).
[25] V. A. Flyagin and G. S. Nusinovich, Proc. IEEE 76, 644 (1988).
[26] A. K. Ganguly and S. Ahn, Int. J. Electronics 67, 261 (1989).
[27] A. K. Ganguly and S. Ahn, Appl. Phys. Lett. 54, 514 (1989).
[28] N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 21, 1037 (1978). Radiophys. Quantum Electron. 21, 728 (1978).
[29] N. S. Ginzburg, I. G. Zarnitsyna, and G. S. Nusinovich, Radio Eng. Electron. Phys. 24, 113 (1979).
[30] N. S. Ginzburg and S. P. Kuznetsov, \Relativistic High-Frequency Electronics. Problems of Increasing Radiation Power and Frequency" [in Russian], IAP RAS Press,
Nizhny Novgorod (1981), p.101.
[31] N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881 (1986).
[32] D. Greenspan, V. Casulli, Numerical Analysis for Applied Mathematics, Science, and engineering, Addison-Wesley, California, 1988, Chap. 8.
[33] A. Grudiev and K. Schunemann, EEE Trans. Plasma Sci., 30 (2002).
[34] S. L. Hahn, "Hilbert Transform in Signal Processing," Artech House, Massachusatts (1996).
[35] F. Hegeler et al, "Studies of relativistic backward-wave oscillator operation in the cross-excitation regime," IEEE Trans. Plasma Sci. 28, 567 (2000).
[36] H. R. Johnson, Proc. IRE 43, 684 (1955).
[37] K. Kamada, K. Nawashiro, F. Tamagawa, H. Igarashi, S. Kizu, C. Y. Lee, S. Kawasaki, R. Ando and M. Masuzaki, Int. J. Infrared Millim.Waves 19, 1317 (1998).
[38] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen and K. R. Chu, Phys. Rev. Lett. 70, 924 (1993).
[39] C. S. Kou, Phys. Plasmas 1, 3093 (1994).
[40] C. S. Kou, C. H. Chen, and T. J. Wu, Phys. Rev. E 57, 7162 (1998).
[41] B. Levush, T. M. Antonsen, A. Bromborsky, W. R. Lou, and Y. Carmel, IEEE Trans. Plasma Sci. 20, 263 (1992).
[42] A. T. Lin, Z. H. Yang, and K. R. Chu, IEEE Trans. Plasma Sci. 16, 129 (1988).
[43] A. T. Lin, Phys. Rev. A 46, 4516 (1992).
[44] A. T. Lin and C. C. Lin, Phys. Fluids B 5, 2314 (1993).
[45] C. C. Lin and A. T. Lin, IEEE Trans. Plasma Sci. 26, 893 (1998)
[46] H. N. Liou, Master thesis, National Tsing Hua Univ., Hsinchu, Taiwan (1988).
[47] A. H. McCurdy, A. K. Ganguly, and C. M. Armstrong, Phys. Rev. A 40, 1402 (1989).
[48] G. S. Nusinovich, "Methods of voltage feed for a pulsed gyromonotron which ensure high efficiency in a single-mode operation," Elektron. Tekh., Ser. 1, Elektron. SVCh, no. 3, 44-49 (1974).
[49] G. S. Nusinovich and O. Dumbrajs, "Theory of gyro-backward wave oscillators with tapered magnetic ‾eld and wavegude cross section," IEEE Trans. Plasma Sci. 24,
620 (1996).
[50] G. S. Nusinovich, IEEE Trans. Plasma Sci. 27, 313 (1999).
[51] G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., Phys. Rev. Lett. 87, 218301 (2001).
[52] R. H. Pantell, Proc. IRE 47, 1146 (1959).
[53] S. Y. Park, V. L. Granatstein, and R. K. Parker, Int. J. Electron. 57, 1109 (1984).
[54] S. Y. Park, R. H. Kyser, C. M. Armstrong, R. K .Parker and V. L. Granatstein, IEEE Trans. Plasma Sci. 18, 321 (1990).
[55] C. W. Peter, R. L. Jaynes, Y. Y. Lau, R. M. Gilgenbach, W. J. Williams, J. M. Hochman, W. E. Cohen, J. I. Rintamaki, D. E. Vollers, J. Luginsland, and T. A.
Spencer, Phys. Rev. E 58, 6880 (1998).
[56] W H Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes," Cambridge University Press,New York, NY (1992).
[57] N. M. Ryskin and V. N. Titov, "Self-modulation and chaotic regimes of generation in a relativistic backward-wave oscillator with end re°ections", Radiophys. Quantum
Electron. 44, 793 (2001).
[58] J. L. Seftor, A. T. Drobot, and K. R. Chu, "An investigation of a magnetron injectin gun uitable for use in cyclotron resonance masers," IEEE Trans. Electron Devices, vol. ED-26, 1609-1616 (1979).
[59] T. A. Spenser, C. E. Davis, K. L. Hendrics, F. J. Agee, and R. M. Gilgenbach, IEEE Trans. Plasma Sci. 24, 630 (1996).
[60] A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference
Time-Domain Method, Artech House, Massachusatts (2000).
[61] D. I. Trubetskov and A. P. Chetverikov, Izy. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 2, 9 (1994).
[62] J. M. Wachtel and E. J. Wachtel, "Backward wave oscillation in gyrotron," Appl. Phys. Lett. 37, 1059 (1980).
[63] M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I. Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, "Effects of tapering on gyrotron backward wave oscillators," IEEE Trans. Plasma Sci. 24, 636 (1996)
[64] V. K. Yulpatov, Radiophys. Quantum Electron. 10, 471 (1967).