研究生: |
林逸軒 Lin, Yi-Xuan |
---|---|
論文名稱: |
胺基醣酯與神經醯胺耦合物和18F標幟前驅物製備之研究 Study on the preparation of amino glycoceramide and the precursor to 18F-labeled analog. |
指導教授: |
俞鐘山
Yu, Chung-Shan |
口試委員: |
陳建添
Chien-Tien Chen 汪炳鈞 Biing-Jiun Uang 瞿港華 Kong-Hwa Chiu 陳炯東 Chiung-Tong Chen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 胺基醣酯質 、半乳醣 、鼠李糖 |
外文關鍵詞: | amino glycoceramide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
作為革蘭氏陰性菌外膜主要的組成成分,脫氧的鼠李糖耦合物在細胞跟細胞間的辨識扮演著關鍵的角色。在此由商品化的鼠李糖和神經鞘胺醇經由16步合成出胺基醣酯質類似物(2S,3R,4S,5R,6R)-2-((2R, 3R,4R,5S,6S)-2-((2S,3S,4R)-2-amino-3,4-dihydroxyoctadecyloxy)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-4-yloxy)-6-(aminomethyl)tetrahydro-2H-pyran-3,4,5-triol總產率5%,並且其中有兩個主要的中間產物,分別為(2R,4S,5S,6S)-2-(azidomethyl)-6-((2S,3S,4R,5R,6S)-3-(benzoyl oxy)-5-(4-methoxybenzoyloxy)-2-methyl-6-(p-tolylthio)tetrahydro-2H-pyran-4-yloxy)tetrahydro- 2H-pyran-3,4,5-triyl tribenzoate (產率:17%,起始物為鼠李糖)和(2S,3S,4R)-2-azido-1-hydroxyoctadecane-3,4-diyl dibenzoate (產率:44%起始物為神經鞘胺醇)。在此目的為製備出可用於分子影像的放射性標幟之醣酯質,放射性氟十八標幟之鼠李糖和神經醯胺耦合分子為目標化合物,製備氟十八標幟醣酯質的前驅物例如tosylate,(2R,3R,4R,6S)-2-((2S,3S,4R)-2-azido-3,4-bis(tert-butyldimethyl silyloxy)octadecyloxy)-5-(benzoyloxy)-4-(2-chloroacetoxy)-6-methyltetrahydro-2H-pyran-3-yl 4-methoxybenzoate可以從鼠李糖經由11步合成並且總產率13%。
As a major component of outer layer of gram-negative bacteria, glycoconjugate of L-rhamnose plays a crucial role in mediating cell-cell recognition. The desired glycoceramide analog (2S,3R,4S,5R,6R)-2-((2R, 3R,4R,5S,6S)-2-((2S,3S,4R)-2-amino-3,4-dihydroxyoctadecyloxy)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-4-yloxy)-6-(aminomethyl)tetrahydro-2H-pyran-3,4,5-triol was prepared from commercial L-rhamnose and phytosphingosine via intermediate: (2R,4S,5S,6S)-2-(azidomethyl)-6- ((2S,3S,4R,5R,6S)-3-(benzoyloxy)-5-(4-methoxybenzoyloxy)-2-methyl-6-(p-tolylthio)tetrahydro-2H-pyran-4-yloxy)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (yield : 17% base on rhamnose) and intermediate: (2S,3S,4R)- 2-azido-1-hydroxyoctadecane-3,4-diyldibenzoate (yield : 44% base on phytosphingosine) in a total yield of 5%. Radiolabeled glycoceramides were attempted to be prepared for imiaging purpose. Rhamnosyl phytosphingosine labeled with 18F emerged as our target compound. The precursor to 18F rhamnosyl phytosphingosine analogs e.g. a tosylate was thus prepared. An alcohol required for tosylate preparation, (2R,3R,4R, 6S)-2-((2S,3S,4R)-2-azido-3,4-bis(tert-butyldimethylsilyloxy)octa decyloxy)-5-(benzoyloxy)-4-(2-chloroacetoxy)-6-methyltetrahydro-2H- pyran-3-yl 4-methoxybenzoate, was obtained via a 11-step synthesis starting from rhamnose in total 13% yield.
1. Ogretmen, B.; Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 2004, 4, 604-616.
2. Snook, C. F.; Jones, J. A.; Hannun, Y. A. Sphingolipid-binding proteins. Biochim. Biophys. Acta 2006, 1761, 927-946.
3. Liao, J. Y.; Tao, J. H.; Lin, G. Q.; Liu, D. G. Chemistry and biology of sphingolipids. Tetrahedron 2005, 61, 4715-4733.
4. Vankar, Y. D.; Schmidt, R. R. Chemistry of glycosphingolipids- carbohydrate molecules of biological significance. Chem. Soc. Rev. 2000, 29, 201–216.
5. Savage, P. B.; Teyton, L.; Bendelac, A. Glycolipids for natural killer T cells. Chem. Soc. Rev. 2006, 35, 771–779.
6. 張凱翔 合成胺基神經醯胺醇之類似物做為核心化合物以建構醯胺化生物分子庫;國立清華大學碩士論文 2009.
7. Kronenberg , M.; Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 2005, 435, 598-604.
8. Smith, D. C.; Lord, J.M., L.; Roberts, M.; Johannes, L. Glycosphingolipids as toxin receptors. Semin. Cell. Dev. Biol. 2004, 15, 397–408.
9. Yu R.K.; Nakatani Y.; Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. J. Lipid Res. 2009, 50, S440-S445.
10. Ariga, T.; Miyatake T.; Yu. R. K. Recent Studies on the Roles of Antiglycosphingolipids in the Pathogenesis of Neurological Disorders. J. Neurosci. Res. 2001, 65, 363–370.
11. Hayashi, H.; N. Kimura, H.; Yamaguchi, K.; Hasegawa, T.; Yokoseki, M.; Shibata, N.; Yamamoto, M.; Michikawa, Y.; Yoshikawa, K.; Terao, et al. Neurobiology of Disease. J. Neurosci. 2004, 24, 4894–4902.
12. Zhu, X. M.; Schmidt, R. R. New Principles for Glycoside-Bond Formation. Angew. Chem., Int. Ed. 2009, 48, 1900–1934.
13. Bruice, P. Y. Organic Chemistry, 5th ed.; Pearson Prentice Hall, 2007.952-953.
14. Campbell, N. A.; Reece, J. B. Biology, 6th ed.; Pearson Benjamin Cummings, 2007.
15. Holst O., in Endotoxin in Health and Disease (Brade H., Morrison D.C. and Vogel S. eds.), Marcel Dekker Inc, New York, 1999, 115-154.
16. Brock, T. D.; Madigan, M. T. Biology of Microorganisms, 5th ed.; Prentice-Hall: New Jersey, 1988; Chapter 1.
17. Caroff, M.; Karibian, D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003, 338, 2431-2447.
18. Daubenspeck, J. M.; Zeng, H.; Chen, P.; Dong, S.; Steichen, C. T.; Krishna, N. R.; Pritchard, D. G.; Turnbough, Jr. C. L. Novel Oligosaccharide Side Chains of the Collagen-like Region of BclA, the Major Glycoprotein of the Bacillus anthracis Exosporium. J. Biol. Chem. 2004, 279, 30945–30953.
19. Werz, D. B.; Seeberger, P. H. Total Synthesis of Antigen Bacillus Anthracis Tetrasaccharide-Creation of an Anthrax Vaccine Candidate. Angew. Chem., Int. Ed. 2005, 44, 6315–6318.
20. Fedonenko, Y. P.; Zdorovenko, E. L.; Konnova, S. A.; Kachala, V. V.; Ignatov, V. V. Structural analysis of the O-antigen of the lipopolysaccharide from Azospirillum lipoferum SR65. Carbohydr. Res. 2008, 343, 2841–2844.
21. MacLean, L. L.; Pagotto, F.; Farber, J. M.; Perry, M. B. The structure of the O-antigen in the endotoxin of the emerging food pathogen Cronobacter (Enterobacter) muytjensii strain 327. Carbohydr. Res. 2009, 344, 667–671.
22. Perepelov, A. V.; L’Vov, V. L.; Liu, B.; Senchenkova, S. N.; Shekht, M. E.; Shashkov, A. S.; Feng, L.; Aparin, P. G.; Wang, L.; Knirel, Y. A new ethanolamine phosphate-containing variant of the O-antigen of Shigella flexneri type 4a. Carbohydr. Res. 2009, 344, 1588–1591.
23. Pieretti, G.; Nicolaus, B.; Poli, A.; Corsaro, M. M.; Lanzetta, R.; Parrilli, M. Structural determination of the O-chain polysaccharide from the haloalkaliphilic Halomonas alkaliantarctica bacterium strain CRSS. Carbohydr. Res. 2009, 344, 2051–2055.
24. Boutet, J.; Guerreiro, C.; Mulard, L. A. Efficient Synthesis of Six Tri- to Hexasaccharide Fragments of Shigella flexneri Serotypes 3a and/or X O-Antigen, Including a Study on Acceptors Containing N-Trichloroacetylglucosamine versus N-Acetylglucosamine. J. Org. Chem. 2009, 74, 2651–2670.
25. Vallabhajosula, S. Molecular Imaging Radiopharmaceuticals for PET and SPECT; Springer, 2009.
26. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew. Chem., Int. Ed. 2008, 47, 8998-9033.
27. 陳劭緯 鼠李醣三醣單元體之合成路徑研究;國立清華大學碩士論文 2010.
28. Bedini, E.; Barone, G.; Unverzagt, C.; Parrilli, M. Synthesis of the pentasaccharide repeating unit of the major O-antigen component from Pseudomonas syringae pv. ribicola NVPPB 1010. Carbohydr. Res. 2004, 339, 393–400.
29. Bedini, E.; Parrilli, M.; Unverzagt, C. Oligomerization of a rhamnanic trisaccharide repeating unit of O-chain polysaccharides from phytopathogenic bacteria. Tetrahedron Lett. 2002, 43, 8879-8882.
30. Fujio, M.; Wu, D. G.; Garcia-Navarro, R.; Ho, D. D.; Tsuji, M.; Wong, C. H. Structure-Based Discovery of Glycolipids for CD1d-Mediated NKT Cell Activation: Tuning the Adjuvant versus Immunosuppression Activity. J. Am. Chem. Soc. 2006, 128, 9022-9023.
31. Yu, C. S.; Wang, H. Y.; Chiang, L. W.; Pei, K. Synthesis of the Rhamnosyl Trisaccharide Repeating Unit To Mimic the Antigen Determinant of Pseudomonas syringae Lipopolysaccharide. Synthesis 2007, 1412-1420.
32. Herna´ndez-Torres, J. M.; Liew, S.-T.; Achkar, J.; Wei, A. Optimized Synthesis of an Orthogonally Protected Glucosamine. Synthesis 2002, 487-490.
33. Zhang, Z. Y.; Magnusson, G. DDQ-Mediated Oxidation of 4,6-O-Methoxybenzylidene-Protected Saccharides in the Presence of Various Nucleophiles: Formation of 4-OH, 6-Cl, and 6-Br Derivatives. J. Org. Chem. 1996, 61, 2394- 2400.
34. Veerapen, N.; Brigl, M.; Garg, S.; Cerundolo, V.; Cox, L. R.;Brenner, M. B.; Besra, G. S. Synthesis and biological activity of a-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide. Bioorg. Med. Chem. Lett. 2009, 19, 4288-4291.
35. Yu, C. S.; Niikura, K.; Lin, C. C.; Wong, C. H. The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the α-Glycosylation of Primary Hydroxy Groups. Angew. Chem. Int. Ed. 2001, 40, 2900-2903.
36. Alper, P. B.; Hung, S. C.; Wong, C. H. Metal Catalyzed Diazo Transfer for the Synthesis of Azides From Amines. Tetrahedron Lett. 1996, 37, 6029-6032.
37. 蘇文欽 含一級胺基醣脂之神經醯胺類似物之製備;國立清華大學碩士論文 2010.
38. 廖國延 合成胺基醣苷神經醯胺類似物以建構醯胺化分子庫之研究;國立清華大學碩士論文 2009.
39. 潘承澤 合成胺基醣類化合物以建構醯胺化衍生物分子庫;國立清華大學碩士論文 2009.
40. Enders, D; Terteryan, V; Palecek, J. Asymmetric Synthesis of the α-D-Galactosyl Ceramide KRN7000 via an Organocatalytic Aldol Reaction as Key Step. Synthesis 2010, 17, 2979-2983.
41. Dhénin, S. G. Y.; Moreau, V.; Nevers, M.-C.; Créminon, C.; Djedaïni-Pilard, F. Sensitive and specific enzyme immunoassays for antigenic trisaccharide from Bacillus anthracis spores. Org. Biomol. Chem. 2009, 7, 5184–5199.
42. Tanaka, H.; Tateno, Y.; Nishiura, Y. ; Takahashi, T. Efficient Synthesis of an α(2,9) Trisialic Acid by One-Pot Glycosylation and Polymer-Assisted Deprotection. Org. Lett. 2008, 24, 5597-5600.
43. Ndonye, R. M.; Izmirian, D. P.; Dunn, M. F.; Yu, K. O. A.; Porcelli, S. A.; Khurana, A.; Kronenberg, M.; Richardson, S. K.; Howell, A. R. Synthesis and Evaluation of Sphinganine Analogues of KRN7000 and OCH. J. Org. Chem. 2005, 70, 10260–10270.
44. Jervis, P. J.; Cox, L. R.; Besra, G. S. Synthesis of a Versatile Building Block for the Preparation of 6-N-Derivatized α-Galactosyl Ceramides: Rapid Access to Biologically Active Glycolipids. J. Org. Chem. 2011, 18, 320-323.
45. Blauvelt, M. L.; Khalili, M; Jaung, W; Paulsen, J; Anderson, A. C.; Wilson, S. B.; Howell, A. R. Bioorg. Med. Chem. 2008, 24, 6968-6970.
46. Mormeneo, D.; Casas, J.; Llebaria, A.; Delgado, A. Synthesis and preliminary antifungal evaluation of a library of phytosphingolipid analogue. Org. Biomol. Chem. 2007, 5, 3769–3777.
47. 王仁聰 4’-α/β-碳氨鏈尿苷類似物分子庫之建立: 醯胺尿苷之合成;國立清華大學碩士論文 2006.
48. Premathilake, H. D.; Mydock, L. K.; Demchenko, A. V. Superarming Common Glycosyl Donors by Simple 2-O-Benzoyl-3,4,6-tri-O- benzyl Protection. J. Org. Chem. 2010, 75, 1095–1100.
49. Pedersen, C. M.; Nordstrom, L. U.; Bols, M. “Super Armed” Glycosyl Donors: Conformational Arming of Thioglycosides by Silylation. J. Am. Chem. Soc. 2007, 129, 9222–9235.
50. Pedersen, C. M.; Marinescu, L. G.; Bols, M. Conformationally armed glycosyl donors: reactivity quantification, new donors and one pot reactions. Chem. Commun. 2008, 2465–2467.
51. Fraser-Reid, B.; Udodong, U. E.; Wu, Z. F.; Ottosson, H.; Merritt, J. R.; Rao, C. S.; Roberts, C.; Madsen, R. n-Pentenyl Glycosides in Organic Chemistry: A Contemporary Example of Serendipity. Synlett. 1992, 927-942.
52. Kamat, M. N.; Demchenko, A. V. Revisiting the Armed- Disarmed Concept Rationale: S-Benzoxazolyl Glycosides in Chemoselective Oligosaccharide Synthesis. Org. Lett. 2005, 7, 3215–3218.
53. Crich, D.; Li, M. Revisiting the Armed-Disarmed Concept: The Importance of Anomeric Configuration in the Activation of S-Benzoxazolyl Glycosides. Org. Lett. 2007, 9, 4115–4118.
54. Mydock, L. K.; Demchenko, A. V. Superarming the S-Benzoxazolyl Glycosyl Donors by Simple 2-O-Benzoyl-3,4,6-tri-O-benzyl Protection. Org. Lett. 2008, 10, 2103–2106.
55. Mydock, L. K.; Demchenko, A. V. Application of the Superarmed Glycosyl Donor to Chemoselective Oligosaccharide Synthesis. Org. Lett. 2008, 10, 2107–2110.
56. Nyffeler, P. T.; Liang, C. H.; Koeller, K. M.; Wong, C. H. J. Am. Chem. Soc. 2002, 124, 10773-10778.
57. Du, W.; Gervay-Hague, J. Efficient synthesis of α-galactosyl ceramide analogues using glycosyl iodide donors. Org. Lett. 2005, 7, 2063-2065.
58. Chervin, S. M.; Abada, P.; Koreeda, M.; Convenient, in situ generation of anhydrous hydrogen iodide for the preparation of α-glycosyl iodides and vicinal iodohydrins and for the catalysis of ferrier glycosylation. Org. Lett. 2000, 2, 369-372.
59. Adinolfi, M.; Iadonisi, A.; Ravid, A.; Schiattarella, M. Efficient and direct synthesis of saccharidic 1,2-ethylidenes, orthoesters, and glycals from peracetylated sugars via the in situ generation of glycosyl iodides with I2/Et3SiH. Tetrahedron Lett. 2003, 44, 7863-7866.
60. Gervay-Hague, J.; Nguyen, T. N.; Hadd, M. J. Mechanistic studies on the stereoselective formation of glycosyl iodides: first characterization of β-D-glycosyl iodides. Carbohydr. Res. 1997, 300, 119-125.
61. El-Badry, M. H.; Gervay-Hague, J. Thermal effect in β-selective glycosylation reactions using glycosyl iodides. Tetrahedron Lett. 2005, 46, 6727-6728.
62. Lam, S. N.; Gervay-Hague, J. Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: a comparative study. Carbohydr. Res. 2002, 337, 1953-1965.
63. Lam, S. N.; Gervay-Hague, J. Solution-Phase Hexasaccharide Synthesis Using Glucosyl Iodides. Org. Lett. 2002, 4, 2039-2042
64. Lam, S. N.; Gervay-Hague, J. Glycal Scavenging in the Synthesis of Disaccharides Using Mannosyl Iodide Donors. J. Org. Chem. 2005, 70, 2387-2390.
65. Du, W.; Kulkarni, S. S.; Gervay-Hague, J. Efficient, one-pot syntheses of biologically active α-linked glycolipids. Chem. Commun. 2007, 2336-2338.
66. Lemieux, R. H.; Hendriks, K. B.; Sticks, R. V.; James, K. Halide ion catalyzed glycosidation reactions. Syntheses of α-Linked disaccharides. J. Am. Chem. Soc. 1975, 119, 4056-4062.