研究生: |
李雅婷 Li, Ya-Ting |
---|---|
論文名稱: |
Determination of Equilibrium Melting Temperature and Fold Surface Energy for Polyethylene and Poly(ethylene oxide) via Simultaneous Small/Wide-angle X-Ray Scattering and Differential Scanning Calorimetry |
指導教授: |
蘇安仲
Su, An-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 平衡熔點 、折疊表面自由能 、聚乙烯 、聚乙二醇 |
外文關鍵詞: | equilibrium melting temperature, fold surface energy, polyethylene, poly(ethylene oxide) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
By means of simultaneous small/wide-angle X-ray scattering and differential scanning calorimetry (SAXS/WAXS/DSC) measurements, a new experimental approach in constructing the Gibbs-Thomson melting line for determination of equilibrium melting temperature (Tmº) and fold surface energy (σe) in melting line is proposed recently by Su et al. for the specific case of syndiotactic polystyrene (sPS). This approach adopts Kratky-Porod approximation and one-dimension correlation in analyzing the lamellar thickness from synchrotron radiation SAXS data. Here we proposed to check the general reliability of such an approach by its application to extensively studied polymers of known Tmº and σe values in melting line, including polyethylene (PE, Tmº = 145.5 ºC and σe = 40 to 100 mJ m–2) and poly(ethylene oxide) (PEO, Tmº = 68.9 ± 0.4 ºC and σe = 23 to 93 mJ m–2). Moreover, a new method of arrayed-disks model is adopted in this work successfully. The equilibrium melting temperatures (via extrapolation of the melting line to infinite lamellar thickness) are determined as Tmº = 145.1 ± 2.3 ºC for polyethylene and Tmº = 70.2 ± 0.5 ºC for PEO. Meanwhile, we estimate from the slope of the melting line that the fold surface energies are σe = 89.7 ± 8.9 mJ m–2 for PE and σe = 23.8 ± 4.5 mJ m–2 for PEO. The experimental results are consistent with the currently known values, indicating that the method we adopted to construct the melting line is feasible and of improved confidence level (especially for σe in the equilibrium limit).
1. Wunderlich, B. Macromolecular Physics; Academic Press:
New York, 1980; Vol.3.
2. Broadhurst, M. G. J. Chem. Phys. 1962, 36, 2578.
3. Flory, P. J.; Vrij, A. J. Am. Chem. Soc. 1963. 85, 3548.
4. Mandelkern, L.; Stack, G. M. Macromolecules 1984, 17,
871.
5. Hoffman, J. D.; Weeks, J. J. J. Res. Natl. Bur. Stand.
(U. S.) 1962, A66, 13.
6. Marand, H.; Xu, J.; Srinivas, S. Macromolecules 1998, 31,
8219.
7. Xu, J.; Srinivas, S.; Marand, H. Macromolecules 1998,
31, 8230.
8. Huang, J.; Prasad, A.; Marand, H. Polymer 1994, 35,
1896.
9. Huang, J.; Marand, H. Macromolecules 1997, 30, 1069.
10. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. In
Treatise in Solid State Chemistry; Vol. 3, Hannay, N.
B., Ed.; Plenum: New York. 1976; Ch. 7.
11. Hoffman, J. D.; Miller, R. L. Polymer 1997, 38, 3151.
12. Alamo, R. G.; Viers, B. D.; Mandelkern, L.
Macromolecules 1995, 28, 3205.
13. Su, C. H.; Jeng, U.; Chen, S. H.; Cheng, C. Y.; Lee, J.
J.; Lai, Y. H.; Su, W. C.; Tsai, J. C.; Su, A. C.
Macromolecules 2009, 42, 4200.
14. Ho, R. M.; Lin, C. P.; Hseih, P. Y.; Chung, T. M.;
Tsai, H. Y. Macromolecules 2000, 33, 6517.
15. Wang, C.; Hsu, Y. C.; Lo, C. F. Polymer 2001, 42, 8447.
16. Al-Hussein, M.; Strobl, G. Macromolecules 2002, 35,
1672.
17. Strobl, G. Prog. Polym. Sci. 2006, 31, 938.
18. Zugenmaier, P.; Cantow, H. J. Kolloid Z. Z. Polym.
1969, 230, 229.
19. Fontana, L.; Vinh, D. Q.; Santoro, M.; Scadolo, S.;
Gorelli, F. A; Bini, R.; Hanflan, M. Phys. Rev. B 2007,
75, 174112.
20. Hocquet, S.; Dosiere, M.; Thierry, A.; Lotz, B.; Koch,
M. H. J.; Dubreuil, N.; Ivanov, D. A. Macromolecules
2003, 36, 8376.
21. Takahashi, Y. ; Tadokoro, H. Macromolecules 1973, 6,
672.
22. Arlie, J. P.; Spegt, P.; Skoulios, A. Makromol. Chem.
1967, 104, 212.
23. Spegt, P. Makromol. Chem. 1970, 140, 167.
24. Vidotto, G.; L vy, D.; Kovacs, A, J. Kolloid Z. Z.
Polym. 1969, 230, 289.
25. Kovacs, A. J.; Gonthier, A. Kolloid Z. Z. Polym.1972,
250, 530.
26. Kovacs, A. J.; Gonthier, A; Straupe, C. J. Polym. Sci.
Polym. Symp. 1975, 50, 283.
27. Buckley, C. P.; Kovacs, A. J. Colloid Polym. Sci. 1975,
58, 44.
28. Buckley, C. P.; Kovacs, A. J. J. Polymer Sci.:
Symposium 1975, 50, 283-325.
29. Cheng, S. Z. D.; Chen, J.; Barley, J. S.; Zhang, A.;
Habenschuss, A.; Zschack ,P. R. Macromolecules 1992,
25, 1453.
30. Hay, J. N. Makromol. Chem. 1976, 177, 2559.
31. Beech, D.G.; Booth, C. Polym. Lett. 1970, 8, 731.
32. Roe, R. J. Methods of X-ray and Neutron Scattering in
Polymer Science; Oxford University Press: Oxford, 2000.
33. Birks, L.S.; Friedman, H. J. Appl. Phys. 1946, 16, 687.
34. Weeks, J. J. J. Res. Nat. Bur. Std. (U.S.) 1963, 67A,
441.
35. Hoffman, J. D.; Weeks, J. J. J. Chem. Phys. 1965, 42,
4301.
36. Gopolan, M.; Mandelkern, L. J. Phys. Chem. 1967, 71,
3833.
37. Roe, R. J.; Bair, H. E. Macromolecules 1970, 3,454.
38. Brown, R. G.; Eby, R. K. J. Appl. Phys. 1964, 35, 1156.
39. Illers, K. H.; Hendus, H. Makromol. Chem. 1968, 113, 1.
40. Huang, J.W. J .Appl. Polym. Sci. 2008, 107, 3163.
41. Harrison, I. R. J. Polym. Sci., Polym. Phys. 1973, 11,
991.
42. Davé, R. S.; Farmer, B. L. Polymer 1988, 29, 1544.
43. Nakagawa, Y.; Hayashi, H.; Takahagi, T.; Soeda, F.;
Ishitani, A.; Toda, A.; Miyaji, H. Jpn. J. Appl. Phys.
1994, 33, 3771.
44. Nakajima, A; Homada, F.; Hayashi, S.; Sumida, T.
Kolloid Z Z. Polym.1968, 222, 10.
45. Barham, P. J; Chivers, R. A.; Keller, A. ; Martinez-
Salazar, J.; Organ, S. J. J. Mater. Sci. 1985, 20,
1625.
46. Organ, S. J.; Keller, A. J. Mater. Sci. 1985, 20, 1602.
47. Fraser, G. V. Indian J. Pure Appl. Phys. 1978, 16, 344.
48. Fraser, G. V. ; Keller, A.; Odell, J. A. J .Appl. Poly.
Sci. 1978, 22, 2979.
49. Weber, C. H. M.; Chiche, A.; Krausch, G.; Rosenfeldt,
S.; Ballauff, M.; Harnau, L.; Göttker-Schnetmann, I.;
Tong, Q.; Mecking, S. Nano Lett. 2007, 7, 2024.
50. Allegra, G.; Meille, S. V. Adv. Polym. Sci. 2005, 191,
87.
51. Allegra, G.; Meille, S. V. Phys. Chem. Chem. Phys.,
1999, 1, 5179.
52. Schmidtke, J.; Strobl, G.; Thurm-Albrecht, T.
Macromolecules 1997, 30, 5804.
53. Strobl, G. Phys. Rev. Lett. 2009, 81, 1287.
54. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys.
Chem. 1990, 94, 8897.
55. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219.
56. Tanemura, M.; Ogawa, T.; Ogita, N. J. Comput. Phys.
1983, 51, 191.
57. Ewald, P. P. Ann. Phys. 1921, 64, 253.
58. Cheng, J.; Cheng, S. Z. D.; Wu, S. S.; Lotz, B.;
Wittmann, J. C. J. Polym. Sci., Polym. Phys. 1995, 33,
1851.