簡易檢索 / 詳目顯示

研究生: 王郁棻
論文名稱: 氧化鈷/二氧化鈦奈米複合物的製備與其於催化水分解產氫的研究
Cobalt Oxide/Titania Nanocomposites : Preparation and Catalytic Applications for Hydrogen Production via Water Splitting
指導教授: 楊家銘
口試委員: 江昀緯
李志甫
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 水分解光催化反應二氧化鈦氧化鈷奈米複合材料
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計出具有p-n接面特性之CoOx/TiO2奈米複合材料並用於紫外光分解水產氫之反應。首先以非水溶液溶膠-凝膠法搭配微波反應系統合成CoOx/TiO2之奈米複合物,並調控前驅物濃度來製備不同鈷含量之樣品。以XRD、UV、TEM、XPS、ICP-MS、EPR與XAS等分析技術對樣品之成分、氧化態與結構進行鑑定。催化劑由銳鈦礦的二氧化鈦與氧化鈷的奈米顆粒組成,而部分樣品之氧化鈷顆粒很小以至於無法清楚的辨認。催化劑於紫外光照射下並以甲醇當犧牲試劑進行水分解反應。在Co/Ti莫耳百分比為2.9 %得到最佳之產氫量,平均之產氫速率為1849.4*10^-6 mol g-1 h-1,此印證了照光產生之電子與電洞能被有效地分離而進行反應。另外,長時間反應之副產物僅有CO2且活性並無衰減,顯示催化劑有極佳之穩定性。


    We studied the photocatalytic water splitting reaction by CoOx/TiO2 nanocomposites with p-n junction characteristic. CoOx/TiO2 nanocomposites were synthesized by non-aqueous sol-gel method with microwave system, and the Co loading was controlled by adjusting the concentration of precursors. The composition, oxidation state and structure of CoOx/TiO2 nanocomposites were characterized by XRD, UV, TEM, XPS, ICP-MS, EPR and XAS. The catalysts were composed of nanocrystalline anatase TiO2 and cobalt oxide nanoparticles that were too small to be directly observed in some of the catalysts. The catalysts were applied for the photocatalytic water splitting under ultraviolet irradiation using methanol as a sacrificial reagent. The photocatalyst with molar ratio of Co and Ti (Co/Ti) of 2.9% showed the highest hydrogen production rate (1849.4 □mol g-1 h-1), suggesting that photo-generated electrons and holes were separated effectively in the photocatalyst. Beside, the catalyst gave CO2 as the only by-product, and it was stable for long-term reaction.

    謝誌 I 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1-1 半導體光觸媒 2 1-2 二氧化鈦光觸媒 4 1-2-1 二氧化鈦簡介 4 1-3 光觸媒分解水之反應 7 1-3-1 光分解水之基本條件與過程 8 1-3-2 犧牲試劑的工作原理 11 1-3-3 有效分離電荷之方法 13 1-4 半導體p-n接面之特性 16 1-5 研究動機 18 第2章 實驗部分 21 2-1 實驗藥品 21 2-2 材料合成 21 2-2-1 以微波法合成二氧化鈦擔載氧化鈷之奈米顆粒 21 2-2-2 參考樣品之製備 23 2-3 光分解水產氫之系統 24 2-4 實驗鑑定之儀器 26 2-4-1 使用分析儀器清單 26 2-4-2 X光粉末繞射儀 26 2-4-3 紫外光-可見光光譜儀 28 2-4-4 穿透式電子顯微鏡 30 2-4-5 X光光電子能譜儀 32 2-4-6 感應耦合電漿質譜分析儀 33 2-4-7 電子順磁共振光譜儀 34 2-4-8 X光吸收光譜術 37 2-4-9 氣相層析儀 41 第3章 結果與討論 43 3-1 TiO2擔載氧化鈷奈米顆粒之材料鑑定 43 3-1-1 樣品相對含量鑑定 43 3-1-2 鈷之氧化態分析 45 3-1-3 TiO2擔載氧化鈷奈米顆粒之結構鑑定 50 3-1-4 光學性質研究 56 3-1-5 參考樣品之鑑定 59 3-2 TiO2擔載氧化鈷奈米顆粒之水分解反應 61 3-2-1 氧化鈷濃度對水分解反應之影響 61 3-2-2 水分解長時間穩定性測試與反應機制探討 67 第4章 結論 70 第5章 參考文獻 71

    1. Fujishima, A.; Honda, K., Nature 1972, 238 (5358), 37-38.
    2. Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D., Journal of the American Chemical Society 2004, 126 (12), 3868-3879.
    3. Linsebigler, A. L.; Lu, G.; Yates, J. T., Chemical Reviews 1995, 95 (3), 735-758.
    4. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Chemical Reviews 1995, 95 (1), 69-96.
    5. Mills, A.; Davies, R. H.; Worsley, D., Chemical Society Reviews 1993, 22 (6), 417-425.
    6. Mills, A.; LeHunte, S., Journal of Photochemistry and Photobiology a-Chemistry 1997, 108 (1), 1-35.
    7. Hu, J.-S.; Ren, L.-L.; Guo, Y.-G.; Liang, H.-P.; Cao, A.-M.; Wan, L.-J.; Bai, C.-L., Angewandte Chemie International Edition 2005, 44 (8), 1269-1273.
    8. Zhang, S.; Shen, J.; Fu, H.; Dong, W.; Zheng, Z.; Shi, L., Journal of Solid State Chemistry 2007, 180 (4), 1456-1463.
    9. Weinhardt, L.; Blum, M.; Bar, M.; Heske, C.; Cole, B.; Marsen, B.; Miller, E. L., The Journal of Physical Chemistry C 2008, 112 (8), 3078-3082.
    10. Zhao, Z.-G.; Miyauchi, M., Angewandte Chemie International Edition 2008, 47 (37), 7051-7055.
    11. Wang, X.; Liu, G.; Chen, Z.-G.; Li, F.; Wang, L.; Lu, G. Q.; Cheng, H.-M., Chemical Communications 2009, (23), 3452-3454.
    12. Gratzel, M., Nature 2001, 414 (6861), 338-344.
    13. Diebold, U., Surface Science Reports 2003, 48 (5-8), 53-229.
    14. Ba, J.; Feldhoff, A.; Fattakhova Rohlfing, D.; Wark, M.; Antonietti, M.; Niederberger, M., Small 2007, 3 (2), 310-317.
    15. Cozzoli, P. D.; Curri, M. L.; Giannini, C.; Agostiano, A., Small 2006, 2 (3), 413-421.
    16. Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M., Applied Catalysis a-General 2007, 325 (1), 1-14.
    17. Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J., The Journal of Physical Chemistry C 2008, 112 (14), 5275-5300.
    18. Serpone, N., The Journal of Physical Chemistry B 2006, 110 (48), 24287-24293.
    19. Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J.-M., Langmuir 1994, 10 (3), 643-652.
    20. Xie, T.-H.; Sun, X.; Lin, J., The Journal of Physical Chemistry C 2008, 112 (26), 9753-9759.
    21. Lin, W.; Frei, H., Journal of the American Chemical Society 2005, 127 (6), 1610-1611.
    22. Nakamura, R.; Okamoto, A.; Osawa, H.; Irie, H.; Hashimoto, K., Journal of the American Chemical Society 2007, 129 (31), 9596-9597.
    23. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Science 2001, 293 (5528), 269-271.
    24. Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., The Journal of Physical Chemistry B 1999, 103 (23), 4862-4867.
    25. Kudo, A.; Miseki, Y., Chemical Society Reviews 2009, 38 (1), 253.
    26. Pleskov, Y. V.; Gurevich, Y. Y., Semiconductor Photoelectrochemistry. Plenum: New York, 1986.
    27. Bao, N.; Shen, L.; Takata, T.; Domen, K., Chemistry of Materials 2008, 20 (1), 110-117.
    28. Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C., Journal of Catalysis 2009, 266 (2), 165-168.
    29. Pal, B.; Ikeda, S.; Kominami, H.; Kera, Y.; Ohtani, B., Journal of Catalysis 2003, 217 (1), 152-159.
    30. Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A., Journal of Catalysis 2008, 259 (1), 133-137.
    31. Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K., Journal of Physical Chemistry C 2009, 113 (12), 4940-4947.
    32. Ni, M.; Leung, M.; Leung, D.; Sumathy, K., Renewable and Sustainable Energy Reviews 2007, 11 (3), 401-425.
    33. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Chemical Reviews 2010, 110 (11), 6503-6570.
    34. Galińska, A.; Walendziewski, J., Energy & Fuels 2005, 19 (3), 1143-1147.
    35. Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M., Journal of Photochemistry and Photobiology A: Chemistry 1995, 89 (2), 177-189.
    36. Li, Y.; Lu, G.; Li, S., Chemosphere 2003, 52 (5), 843-850.
    37. Wu, N.-L.; Lee, M.-S., International Journal of Hydrogen Energy 2004, 29 (15), 1601-1605.
    38. Koriche, N.; Bouguelia, A.; Aider, A.; Trari, M., International Journal of Hydrogen Energy 2005, 30 (7), 693-699.
    39. Saadi, S.; Bouguelia, A.; Derbal, A.; Trari, M., Journal of Photochemistry and Photobiology A: Chemistry 2007, 187 (1), 97-104.
    40. Boudjemaa, A.; Bouarab, R.; Saadi, S.; Bouguelia, A.; Trari, M., Applied Energy 2009, 86 (7-8), 1080-1086.
    41. Wei, Y.; Li, J.; Huang, Y.; Huang, M.; Lin, J.; Wu, J., Solar Energy Materials and Solar Cells 2009, 93 (8), 1176-1181.
    42. Huang, Y.; Li, J.; Wei, Y.; Li, Y.; Lin, J.; Wu, J., Journal of Hazardous Materials 2009, 166 (1), 103-108.
    43. Chiarello, G. L.; Forni, L.; Selli, E., Catalysis Today 2009, 144 (1-2), 69-74.
    44. Gadosy, T. A.; McClelland, R. A., Journal of the American Chemical Society 1999, 121 (7), 1459-1465.
    45. Yu, J.; Zhang, Y.; Kudo, A., Journal of Solid State Chemistry 2009, 182 (2), 223-228.
    46. Ke, D.; Peng, T.; Ma, L.; Cai, P.; Dai, K., Inorganic Chemistry 2009, 48 (11), 4685-4691.
    47. Ke, D.; Peng, T.; Ma, L.; Cai, P.; Jiang, P., Applied Catalysis A: General 2008, 350 (1), 111-117.
    48. Li, M.; Zhao, L.; Guo, L., International Journal of Hydrogen Energy 2010, 35 (13), 7127-7133.
    49. Ebina, Y.; Sasaki, T.; Harada, M.; Watanabe, M., Chemistry of Materials 2002, 14 (10), 4390-4395.
    50. Ikuma, Y.; Bessho, H., International Journal of Hydrogen Energy 2007, 32 (14), 2689-2692.
    51. Kasahara, A.; Nukumizu, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., The Journal of Physical Chemistry B 2002, 107 (3), 791-797.
    52. Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Chemical Communications 2002, (16), 1698-1699.
    53. Chiarello, G. L.; Selli, E.; Forni, L., Applied Catalysis B: Environmental 2008, 84 (1-2), 332-339.
    54. Sreethawong, T.; Yoshikawa, S., Catalysis Communications 2005, 6 (10), 661-668.
    55. Hara, M.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Domen, K., Chemical Communications 2003, 9 (24), 3000-3001.
    56. Navarro, R. M.; del Valle, F.; Fierro, J. L. G., International Journal of Hydrogen Energy 2008, 33 (16), 4265-4273.
    57. Pal, B.; Torimoto, T.; Okazaki, K. I.; Ohtani, B., Chemical Communications 2007, (5), 483-485.
    58. Sano, T.; Kutsuna, S.; Negishi, N.; Takeuchi, K., Journal of Molecular Catalysis A: Chemical 2002, 189 (2), 263-270.
    59. Kadowaki, H.; Saito, N.; Nishiyama, H.; Kobayashi, H.; Shimodaira, Y.; Inoue, Y., Journal of Physical Chemistry C 2007, 111 (1), 439-444.
    60. Lee, Y.; Terashima, H.; Shimodaira, Y.; Teramura, K.; Hara, M.; Kobayashi, H.; Domen, K.; Yashima, M., Journal of Physical Chemistry C 2007, 111 (2), 1042-1048.
    61. Abe, T.; Suzuki, E.; Nagoshi, K.; Miyashita, K.; Kaneko, M., Journal of Physical Chemistry B 1999, 103 (7), 1119-1123.
    62. Domen, K.; Naito, S.; Soma, M.; Onishi, T.; Tamaru, K., J. Chem. Soc., Chem. Commun. 1980, 543-544.
    63. Domen, K.; Naito, S.; Onishi, T.; Tamaru, K.; Soma, M., Journal of Physical Chemistry 1982, 86 (18), 3657-3661.
    64. Sreethawong, T.; Suzuki, Y.; Yoshikawa, S., International Journal of Hydrogen Energy 2005, 30 (10), 1053-1062.
    65. Domen, K.; Kudo, A.; Onishi, T.; Kosugi, N.; Kuroda, H., Journal of Physical Chemistry 1986, 90 (2), 292-295.
    66. Kudo, A.; Sayama, K.; Tanaka, A.; Asakura, K.; Domen, K.; Maruya, K.; Onishi, T., Journal of Catalysis 1989, 120 (2), 337-352.
    67. Miseki, Y.; Kato, H.; Kudo, A., Chemistry Letters 2005, 34 (1), 54-55.
    68. Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H., Nature 2001, 414 (6864), 625-627.
    69. Ke, D.; Liu, S.; Dai, K.; Zhou, J.; Zhang, L.; Peng, T., Journal of Physical Chemistry C 2009, 113 (36), 16021-16026.
    70. Hirai, T.; Bando, Y.; Komasawa, I., Journal of Physical Chemistry B 2002, 106 (35), 8967-8970.
    71. Sahu, N.; Upadhyay, S. N.; Sinha, A. S. K., International Journal of Hydrogen Energy 2009, 34 (1), 130-137.
    72. Lunawat, P. S.; Senapati, S.; Kumar, R.; Gupta, N. M., International Journal of Hydrogen Energy 2007, 32 (14), 2784-2790.
    73. Sant, P. A.; Kamat, P. V., Physical Chemistry Chemical Physics 2002, 4 (2), 198-203.
    74. Baker, D. R.; Kamat, P. V., Advanced Functional Materials 2009, 19 (5), 805-811.
    75. Wang, D.; Zou, Z.; Ye, J., Chemical Physics Letters 2004, 384 (1-3), 139-143.
    76. Wang, D.; Zou, Z.; Ye, J., Chemistry of Materials 2005, 17 (12), 3255-3261.
    77. Wu, J.; Cheng, Y.; Lin, J.; Huang, Y.; Huang, M.; Hao, S., Journal of Physical Chemistry C 2007, 111 (9), 3624-3628.
    78. Khaselev, O.; Turner, J. A., Science 1998, 280 (5362), 425-427.
    79. Grätzel, M., Nature 2001, 414 (6861), 338-344.
    80. Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y., Journal of Physical Chemistry B 2006, 110 (41), 20211-20216.
    81. Bessekhouad, Y.; Robert, D.; Weber, J. V., Catalysis Today 2005, 101 (3-4 SPEC. ISS.), 315-321.
    82. Kim, H. G.; Borse, P. H.; Jang, J. S.; Jeong, E. D.; Jung, O. S.; Suh, Y. J.; Lee, J. S., Chemical Communications 2009, (39), 5889-5891.
    83. Boumaza, S.; Boudjemaa, A.; Bouguelia, A.; Bouarab, R.; Trari, M., Applied Energy 2010, 87 (7), 2230-2236.
    84. Nave, R. P-N Junction.
    85. Akhavan, O.; Azimirad, R., Applied Catalysis A: General 2009, 369 (1-2), 77-82.
    86. Lalitha, K.; Sadanandam, G.; Kumari, V. D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N. Y., The Journal of Physical Chemistry C 2010, 114 (50), 22181-22189.
    87. Xu, S.; Du, A. J.; Liu, J.; Ng, J.; Sun, D. D., International Journal of Hydrogen Energy 2011, 36 (11), 6560-6568.
    88. Schoonen, Y. X. a. M. A. A., American Mineralogist 2000, 85, 543-556.
    89. Hsu, Y.-C.; Lin, H.-C.; Lue, C.-W.; Liao, Y.-T.; Yang, C.-M., Applied Catalysis B: Environmental 2009, 89 (3-4), 309-314.
    90. Kato, H.; Asakura, K.; Kudo, A., Journal of the American Chemical Society 2003, 125 (10), 3082-3089.
    91. Elder, S. H.; Cot, F. M.; Su, Y.; Heald, S. M.; Tyryshkin, A. M.; Bowman, M. K.; Gao, Y.; Joly, A. G.; Balmer, M. L.; Kolwaite, A. C.; Magrini, K. A.; Blake, D. M., Journal of the American Chemical Society 2000, 122 (21), 5138-5146.
    92. B. Malcolm, C. B. J., An introduction to electron para-magnetic resonance. W.A.Benjamin, INC: 1966.
    93. Pinna, N.; Niederberger, M., Angewandte Chemie - International Edition 2008, 47 (29), 5292-5304.
    94. Gulino, A.; Fragalà, I., Inorganica Chimica Acta 2005, 358, 4466-4472.
    95. Okamoto, Y.; Nagata, K.; Adachi, T.; Imanaka, T.; Inamura, K.; Takyu, T., The Journal of Physical Chemistry 1991, 95 (1), 310-319.
    96. Chao, K. J.; Sheu, S. P.; Sheu, H. S., Journal of the Chemical Society, Faraday Transactions 1992, 88 (19), 2949-2954.
    97. Giamello, E.; Sojka, Z.; Che, M.; Zecchina, A., Journal of Physical Chemistry 1986, 90 (23), 6084-6091.
    98. Oliva, C.; Forni, L.; Formaro, L., Applied Spectroscopy 1996, 50 (11), 1395-1398.
    99. Lommens, P.; Loncke, F.; Smet, P. F.; Callens, F.; Poelman, D.; Vrielinck, H.; Hens, Z., Chemistry of Materials 2007, 19 (23), 5576-5583.
    100. Antolini, E.; Zhecheva, E., Materials Letters 1998, 35 (5-6), 380-382.
    101. Niederberger, M.; Garnweitner, G., Chemistry - A European Journal 2006, 12 (28), 7282-7302.
    102. Garavaglia, R.; Mari, C. M.; Trasatti, S.; de Asmundis, C., Surface Technology 1983, 19 (3), 197-215.
    103. Zhou, G. W.; Don, K. L.; Young, H. K.; Chang, W. K.; Young, S. K., Bulletin of the Korean Chemical Society 2006, 27 (3), 368-372.
    104. Hamdy, M. S.; Ramanathan, A.; Maschmeyer, T.; Hanefeld, U.; Jansen, J. C., Chemistry - A European Journal 2006, 12 (6), 1782-1789.
    105. Brik, Y.; Kacimi, M.; Ziyad, M.; Bozon-Verduraz, F., Journal of Catalysis 2001, 202 (1), 118-128.
    106. El-Malki, E. M.; Werst, D.; Doan, P. E.; Sachtler, W. M. H., Journal of Physical Chemistry B 2000, 104 (25), 5924-5931.
    107. El Haskouri, J.; Cabrera, S.; Gómez-García, C. J.; Guillem, C.; Latorre, J.; Beltrán, A.; Beltrán, D.; Marcos, M. D.; Amorós, P., Chemistry of Materials 2004, 16 (14), 2805-2813.
    108. He, T.; Chen, D.; Jiao, X.; Wang, Y.; Duan, Y., Chemistry of Materials 2005, 17 (15), 4023-4030.
    109. Barreca, D.; Massignan, C.; Daolio, S.; Fabrizio, M.; Piccirillo, C.; Armelao, L.; Tondello, E., Chemistry of Materials 2001, 13 (2), 588-593.
    110. Cheng, C.-S.; Serizawa, M.; Sakata, H.; Hirayama, T., Materials Chemistry and Physics 1998, 53 (3), 225-230.
    111. Zhou, L.; Xu, J.; Li, X.; Wang, F., Materials Chemistry and Physics 2006, 97 (1), 137-142.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE