研究生: |
陳藝友 Chen, Yi-You |
---|---|
論文名稱: |
微波電漿輔助化學氣相沉積法成長碳材料應用於場發射手持式常壓電漿產生裝置之設計研究 Study on the field emission enhanced handheld atmospheric pressure plasma jet based on nano-carbon materials by MPCVD |
指導教授: |
蔡宏營
Tsai, Hung-Yin |
口試委員: |
李紫原
Lee, Chi-Young 葉孟考 Yeh, Meng-Kao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 微波電漿化學氣相沉積法 、奈米碳材料 、場發射 、常壓電漿 、電漿裝置 、表面處理 |
外文關鍵詞: | Microwave plasma chemical vapor deposition, Carbon nanomaterials, Field emission, Atmospheric plasma, Plasma device, Surface treatment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發之手持式常壓電漿產生裝置,具有體積小,便於握持,對於進行物件表面處理可擁有靈活之操作,此設計亦可結合於既有設備之上成為外掛裝置,拓展其他用途。
本研究開發之場發射輔助常壓電漿產生裝置擁有對物件表面進行表面處理之能力,透過對銅箔表面分別進行1與3分鐘之電漿處理後,使銅箔之表面性質由疏水轉化為親水特性。
本研究透過結合奈米碳材料場發射陰極端與自行設計之手持式常壓電漿產生系統,利用場發射陰極端提供的電子,增加氣體分子碰撞機率,使氣體能於較低功率下產生崩潰(breakdown),達到節省能源之目的。
本研究利用微波電漿化學氣相沉積系統(Microwave plasma chemical vapor deposition system, MPCVD),於大面積矽基板上沉積具有良好場發射特性之奈米碳管與奈米碳片球場發射陰極材料,亦透過調整不同觸媒濃度設定,成長奈米碳管複合奈米碳片球場發射陰極材料,本研究所成長之一步驟奈米碳管複合奈米碳片球場發射陰極材料擁有2.07 V/μm低起始電場(Turn-on filed)與2.80 V/μm低門檻電場(Threshold field),使場發射陰極端在結合常壓電漿產生裝置後能發揮最大效益。
The purpose of this study is to fabricate a handheld field emission enhanced atmospheric pressure plasma jet based on microwave plasma chemical vapor deposition synthesized carbon material.
The device which designed in this study has the advantages of small size, easy to operate and the ability to modify the surface of objects.
There are many advantages of atmospheric pressure plasma, such as no need for expensive vacuum equipment and no limit by chamber size that can increase the efficiency of the process. However, the energy consumption may be a big issue.
Therefore, a handheld device combined field emission theory with atmospheric pressure plasma technology has been fabricated in this study. It uses the electrons that emit from a carbon material to collide the atom of gas then reduces the breakdown power on processing gas and successfully increases the efficiency of plasma generation.
A hybrid material consisting of carbon nanotubes(CNTs) and carbon nanoflake balls(CNFBs) were successfully synthesized on silicon substrates with the size of 1.5×1.5 cm2 by microwave plasma chemical vapor deposition system.
The carbon hybrid material exhibited excellent field emission properties, with its low turn-on field 2.07 V/μm and low threshold field 2.80 V/μm.
[1] W. Crookes, "On radiant matter; a lecture delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879," The American journal of science and Arts, vol. 106, pp. 241-262, 1879.
[2] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy of Sciences, vol. 14, pp. 627-637, 1928.
[3] L. Bárdos and H. Baránková, "Cold atmospheric plasma: Sources, processes, and applications," Thin Solid Films, vol. 518, pp. 6705-6713, 2010.
[4] H. Conrads and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Science and Technology, vol. 9, pp. 441-454, 2000.
[5] 周麗新, 薄膜工程. 新竹: 國立清華大學材料工程學系, 1995.
[6] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[7] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B, vol. 61, pp. 2-30, 2006.
[8] G. S. Selwyn, H. W. Herrmann, J. Park, and I. Henins, "Materials processing using an atmospheric pressure, RF-generated plasma source," Contributions to Plasma Physics, vol. 41, pp. 610-619, 2001.
[9] H. Koinuma, H. Ohkubo, and T. Hashimoto, "Development and application of a microbeam plasma generator," Applied Physics Letters, vol. 60, pp. 816-817, 1992.
[10] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks, and G. S. Selwyn, "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, pp. 282-285, 1998.
[11] U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, vol. 23, pp. 1-46, 2003.
[12] J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on Plasma Science, vol. 19, pp. 1152-1165, 1991.
[13] R. H. Flower and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 119, pp. 173-181, 1928.
[14] J. He, P. H. Cutler, and N. M. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, pp. 1644-1646, 1991.
[15] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, pp. 702-704, 1993.
[16] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B, vol. 12, 1994.
[17] K. L. Jensen and E. G. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B, vol. 13, pp. 511-515, 1995.
[18] T. S. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, pp. 3699-3701, 2001.
[19] D. Kim, J. E. Broree, and S. Y. Kim, "Numerical study on the field emission properties of aligned carbon nanotubes using the hybrid field enhancement scheme," Applied Physics A, vol. 83, pp. 111-114, 2006.
[20] C. Langer, C. Prommesberger, F. Dams, and R. Schreiner, "Theoretical investigations into the field enhancement factor of silicon structures," Proceedings of International Vacuum Nanoelectronics Conference, pp. 1-2, 2012.
[21] D. S. Roveri, G. M. Sant'Anna, H. H. Bertan, J. F. Mologni, M. A. R. Alves, and E. S. Braga, "Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method," Ultramicroscopy, vol. 160, pp. 247-251, 2016.
[22] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
[23] X. Q. Wang, M. Wang, H. L. Ge, Q. Chen, and Y. B. Xu, "Modeling and simulation for the field emission of carbon nanotubes array," Physica E, vol. 30, pp. 101-106, 2005.
[24] R. C. Smith and S. R. P. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, p. 133104, 2009.
[25] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[26] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[27] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load," Science, vol. 287, pp. 637-640, 2000.
[28] M. Kumar and Y. Ando, "Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3739-3758, 2010.
[29] W. A. D. Heer, A. Chatelain, and D. Ugarte, "A carbon nanotube field-emission source," Science, vol. 270, pp. 1179-1180, 1995.
[30] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kimd, "Fully sealed, high-brightness carbon-nanotube field-emission display," Applied Physics Letters, vol. 75, pp. 3129-3131, 1999.
[31] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Letters, vol. 9, pp. 4359-4363, 2009.
[32] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[33] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[34] Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung, M. Kim, and C. Y. Park, "Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition," Applied Physics Letters, vol. 98, p. 263106, 2011.
[35] D. A. Boyd, W. H. Lin, C. C. Hsu, M. L. Teague, C. C. Chen, Y. Y. Lo, W. Y. Chan, W. B. Su, T. C. Cheng, C. S. Chang, C. I. Wu, and N. C. Yeh, "Single-step deposition of high-mobility graphene at reduced temperatures," Nature Communication, vol. 6, pp. 1-8, 2015.
[36] G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amaratunga, and M. Chhowalla, "Field emission from graphene based composite thin films," Applied Physics Letters, vol. 93, p. 233502, 2008.
[37] L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. J. Gao, "Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field emitters," Advanced Materials, vol. 25, pp. 250-255, 2013.
[38] F. Ding, A. Rosén, and K. Bolton, "Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth," Journal of Chemical Physics, vol. 121, pp. 2775-2779, 2004.
[39] I. L. Chang, P. H. Tsai, and H.Y. Tsai, "Field emission characteristics of CNFB-CNT hybrid material grown by one-step MPCVD," Diamond and Related Materials, vol. 69, pp. 229-236, 2016.
[40] K. Samanta, M. Jassal, and A. K. Agrawal, "Atmospheric pressure glow discharge plasma and its applications in textile," Indian Journal of Fibre & Textile Research, vol. 31, pp. 83-98, 2006.
[41] Q. Xiong, A. Y. Nikiforov, M. A. Gonzalez, C. Leys, and X. P. Lu, "Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy," Plasma Sources Science and Technology, vol. 22, p. 015011, 2013.
[42] L. Chauvet, L. Therese, B. Caillier, and P. Guillot, "Characterization of an asymmetric DBD plasma jet source at atmospheric pressure," Journal of Analytical Atomic Spectrometry, vol. 29, pp. 2050-2057, 2014.
[43] T. L. Koh, E. C. O’Hara, and M. J. Gordon, "Microplasma-based synthesis of vertically aligned metal oxide nanostructures," Nanotechnology, vol. 23, pp. 425603-1~425603-7, 2012.
[44] N. F. Daudt, J. C. P. Barbosa, M. O. C. Macedo, M. B. Pereira, and C. A. Junior, "Effect of cage configuration in structural and optical properties of TiN films grown by cathodic cage discharge," Materials Research, vol. 16, pp. 766-771, 2013.
[45] Y. Deng, A. D. Handoko, Y. Du, S. Xi, and B. S. Teo, "In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of Cuǀǀǀ oxides as catalytically active species," ACS Catalysis, vol. 6, pp. 2473-2481, 2016.
[46] K. Tang, X. Wang, W. Yan, J. Yu, and R. Xu, "Fabrication of superhydrophilic Cu2O and CuO membranes," Journal of Membrane Science, vol. 286, pp. 279-284, 2006.
[47] M. Pei, B. Wang, Y. Tung, X. Zhang, H. Yan, and X. Zhang, "Preparation of Cu2O superhydrophobic film with hierarchical structure via the facile route," Asian Journal of Chemistry, vol. 26, pp. 315-318, 2014.