簡易檢索 / 詳目顯示

研究生: 李 泓
Li, Hung
論文名稱: 在藍綠菌中以CRISPR基因編輯相關技術優化生質化學品生產
Genome engineering of cyanobacteria for the optimal production of bio-chemicals by using the CRISPR associated system
指導教授: 胡育誠
Hu, Yu-Chen
沈若樸
Shen, Roa-Pu
口試委員: 蔡伸隆
Tsai, Shen-Long
陳彥霖
Chen, Yen-Lin
梁克明
Liang, Ke-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 藍綠菌細長聚球藻PCC 7942基因調控CRISPR/Cas9CRISPRilibrary代謝工程琥珀酸2,3丁二醇
外文關鍵詞: S.elongatusPCC7942, CRISPRilibrary, metabolicengineering, 2,3-BDO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍綠菌現今常被用來做為生產生質燃料或生質化學品的生物工廠。但是藍綠菌如Synechococcus elongatus PCC 7492常常在基因工程中遇到目標基因無法穩定的問題。同時CRISPR-Cas9系統是現今最新開發出來經由RNA引導的基因體編輯技術,但該系統尚未有任何文獻報告應用於藍綠菌中。在本研究中我們證明了CRISPR-Cas9系統可以有效地對於PCC 7492中的染色體進行雙股斷裂 (DSB)並且使細菌死亡。然而當我們同時共轉型CRISPR-Cas9系統含有基因組及同源臂之模板質體時,CRISPR-Cas9系統造成的雙股斷裂可以使外源基因精確的嵌入目標染色體位置。在增進同源互換效率的同時也可以減少模板DNA的劑量並減少同源臂的長度。此外CRISPR-Cas9造成的DSB也可做為篩選工具來增進外源基因組嵌入PCC7942所有染色體的機會。因此可以加速篩選出具有同質且穩定之重組染色體菌株。我們接著進一步探討利用CRISPR-Cas9系統對藍綠菌進行代謝途徑的調控。首先將glgc基因剔除同時將gltA以及ppc基因嵌入,藉此增進琥珀酸的產量達到707.0 g/L/OD730,相較野生型的琥珀酸產量提升了接近11倍。這些結果表示CRISPR-Cas9系統可以成功地修改並調控藍綠菌之的代謝途徑。接著第二部分我們進一步探討是否能利用CRISPR-Cas9系統對藍綠菌進行代謝途徑的調控促進2,3-丁二醇(2,3-BDO)在藍綠菌中之產量。在本研究中我們將分為三個階段做探討:(1)希望從許多不同來源菌株的Cas9蛋白中找到合適可替代之前研究所用的Cas9蛋白(SpCas9),令後續使用CRISPRi系統時不會出現受到無預期干擾的抑制結果。(2)以找出之替代Cas9系統在藍綠菌中建構2,3-BDO代謝途徑生產2,3-BDO。(3)以CRISPRi library的概念進行CRISPRi抑制代謝途徑來優化2,3-BDO產量。最後結果我們發現利用SaCas9可高效將CRISPRi系統 (含SpdCas9與sgRNA兩外源基因組) 嵌入藍綠菌染色體中並利用CRISPRi library的概念篩選出fbp、sps、ppc與pdh基因對於2,3-BDO生產的影響。最後經過基因調控我們將2,3-BDO產量由818.4 mg/l提升至1583.8 mg/l (約提升93.5%)。這表示利用CRISPRi library系統可用於更有效率篩選出調控細菌代謝路徑的關鍵基因,方便我們後續更有效的調控並生產各種生質能源/生質化學品。


    Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, yet genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7492 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-guided genome editing system, yet its application for cyanobacteria engineering has yet to be reported. Here we demonstrated that CRISPR-Cas9 system can effectively trigger programmable double strand break (DSB) at the chromosome of PCC 7492 and provoke cell death. With the co-transformation of template plasmid harboring the gene cassette and flanking homology arms, CRISPR-Cas9-mediated DSB enabled precise gene integration, ameliorated the homologous recombination efficiency and allowed the use of lower amount of template DNA and shorter homology arms. The CRISPR-Cas9-induced cell death imposed selective pressure and enhanced the chance of concomitant integration of gene cassettes into all chromosomes of PCC 7942, hence accelerating the process of obtaining homogeneous and stable recombinant strains. We further explored the feasibility of engineering cyanobacteria by CRISPR-Cas9-assisted simultaneous glgc knock-out and gltA/ppc knock-in, which improved the succinate titer to 707.0g/l/OD730, a 11-fold increase when compared with that of the wild-type cells. These data altogether justify the use of CRISPR-Cas9 for genome engineering and manipulation of metabolic pathways in cyanobacteria. In second part, we try to regulate the pathway of cyanobacteria (gene fbp, sps, ppc and pdh was be regularated) to enhance the titer of 2,3-BDO by using CRISPR-Cas9 assiocited system. There are three stages: (1) Finding the altinative Cas9 system that can work correctly with dCas9 system. (2) Using alternative Cas9 system to construct 2,3-BDO metabolic pathways and produce 2,3-BDO in cyanobacteria. (3) Interference the metabolic pathway to optimize 2,3-BDO production and analysis the interaction of the pathway by CRISPRi library system. The result showed the SaCas9 can instead SpCas9 to improve the homologous recombination efficiency and integrate CRISPRi into the genome. Meanwhile, we found the regulation of these 4 genes lead to the different changing of the 2,3-BDO yield (such as enhance, decrease or no effect) and finally enhance the titer of 2,3-BDO up to 93.5% (from 818.4 mg/l to 1583.8 mg/l). This system can be used to screen the key genes that can regulate the pathways of bacterial metabolism and improve the production of various bioenergy / biochemical.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論------------------------------------------1 第二章 文獻回顧---------------------------------------2 2-1藍綠菌S. elongatus PCC7942簡介--------------------2 2-2 CRISPR相關技術介紹--------------------------------3 2-2-1 CRISPR基因編輯系統------------------------------3 2-2-2 CRISPRi系統之簡介------------------------------4 2-2-3 CRISPR及CRISPRi系統於藍綠菌之應用---------------5 2-2-4 CRISPR library之簡介---------------------------5 2-3琥珀酸介紹----------------------------------------6 2-4 2,3-丁二醇介紹-----------------------------------7 2-5 研究動機-----------------------------------------8 第三章 實驗材料及方法--------------------------------14 3-1建構質體方法-------------------------------------14 3-1-1模板質體與CRISPR質體建構------------------------14 3-1-2同源臂更換-------------------------------------14 3-1-3三種CRISPR系統質體之建構------------------------17 3-1-4含有2,3-BDO代謝途徑必須基因同源互換模版質體及含有dCas9蛋白基因同源互換模板質體之建構--------------------------------------18 3-2 Synechococcus elongatus PCC 7942---------------19 3-2-1 Synechococcus elongatus PCC 7942培養條件------19 3-2-2 Synechococcus elongatus PCC 7942質體轉型------20 3-3 CRISPR相關分析----------------------------------21 3-3-1 Synechococcus elongatus PCC 7942細胞死亡分析--21 3-3-2 Synechococcus elongatus PCC 7942細胞同源互換效率分析--------21 3-3-3 不同CRISPR蛋白對於Synechococcus elongatus PCC 7942細胞是否造成毒性之分析----------------------------------------------22 3-3-4以CRISPR-Cas9系統對細長聚球藻PCC7942進行代謝工程--------------22 3-3-5不同CRISPR系統間交互干擾之探討------------------22 3-3-6 CRISPRi library 設計--------------------------23 3-4其他分析方法-------------------------------------24 3-4-1以colony PCR驗證同源重組至染色體正確位置---------24 3-4-2即時偵測同步定量反轉錄聚合酶連鎖反應(qRT-PCR)----26 3-4-3胞內肝醣定量分析(Quantification of glycogen)---28 3-4-4琥珀酸產量分析(Succinate analysis)-------------29 3-4-5以GC-BID分析2,3-BDO產量------------------------29 3-4-6 F6P、蔗糖、草醯乙酸與乙醯輔酶A分析--------------30 3-4-7統計分析---------------------------------------31 第四章 實驗結果與討論(I) 利用CRISPR/Cas9技術在藍綠菌中以基因工程生產琥珀酸 ---------------------------------------------------49 4-1 CRISPR-Cas9 在細長聚球藻PCC 7942中可造成DSB導致細胞死亡--------49 4-2由CRISPR造成之DSB可促進同源互換的效率-------------50 4-3經由改變轉型質體的劑量來優化同源互換效率-----------51 4-4 CRISPR-Cas9系統可促進染色體隔離篩選效率----------53 4-5以CRISPR-Cas9系統對細長聚球藻PCC7942進行代謝工程來生產琥珀酸-----55 4-6討論--------------------------------------------56 第五章 實驗結果與討論(II) 在藍綠菌中建立CRISPRi Library平台以篩選分析多基因對於目標代謝網路的影響並優化生產----------------------71 5-1 測試各CRISPR系統在藍綠菌中造成DNA雙股斷裂效率-----71 5-2 測試各CRISPR系統在藍綠菌中同源互換促進效率--------73 5-3 利用CRISPRi library調控基因表現並優化2,3-BDO產量--------------74 5-4 經CRISPRi library調控後四基因表現與副產物產量變化對2,3-BDO產量影響 ---------------------------------------------------79 5-5 經由統計分析四基因表現量與2,3-BDO產量之關係並優化培養條件進一步提升2,3-BDO產量--------------------------------------------80 5-6 討論-------------------------------------------82 第六章 未來展望-------------------------------------97 第七章 參考文獻-------------------------------------99

    [1] J.W. Oliver, I.M. Machado, H. Yoneda, S. Atsumi, Cyanobacterial conversion of carbon dioxide to 2,3-butanediol, Proc Natl Acad Sci U S A 110(4) (2013) 1249-54.
    [2] J. Witcover, S. Yeh, D. Sperling, Policy options to address global land use change from biofuels, Energ. Pol. 56 (2013) 63-74.
    [3] J.W.K. Oliver, I.M.P. Machado, H. Yoneda, S. Atsumi, Combinatorial optimization of cyanobacterial 2,3-butanediol production, Metabolic Engineering 22 (2014) 76-82.
    [4] J. Zhou, T. Zhu, Z. Cai, Y. Li, From cyanochemicals to cyanofactories: a review and perspective, Microbial cell factories 15(1) (2016) 2.
    [5] Y. Yu, L. You, D. Liu, W. Hollinshead, Y.J. Tang, F. Zhang, Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory, Marine drugs 11(8) (2013) 2894-916.
    [6] C. Baroukh, R. Munoz-Tamayo, J.P. Steyer, O. Bernard, A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production., Metab Eng 30 (2015) 49-60.
    [7] B.M. Berla, R. Saha, C.M. Immethun, C.D. Maranas, T.S. Moon, H.B. Pakrasi, Synthetic biology of cyanobacteria: unique challenges and opportunities, Front Microbiol 4 (2013) 246.
    [8] P. Savakis, K.J. Hellingwerf, Engineering cyanobacteria for direct biofuel production from CO2, Curr Opin Biotechnol 33 (2015) 8-14.
    [9] Z.X. Gao, H. Zhao, Z.M. Li, X.M. Tan, X.F. Lu, Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria (vol 5, pg 9857, 2012), Energ Environ Sci 9(3) (2016) 1113-1113.
    [10] W. Xiong, J.A. Morgan, J. Ungerer, B. Wang, P.C. Maness, J.P. Yu, The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene, Nat Plants 1(5) (2015).
    [11] J. Zhou, H.F. Zhang, Y.P. Zhang, Y. Li, Y.H. Ma, Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide, Metabolic Engineering 14(4) (2012) 394-400.
    [12] T. Kusakabe, T. Tatsuke, K. Tsuruno, Y. Hirokawa, S. Atsumi, J.C. Liao, T. Hanai, Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light, Metabolic Engineering 20 (2013) 101-108.
    [13] S. Atsumi, W. Higashide, J.C. Liao, Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde, Nature Biotechnology 27(12) (2009) 1177-U142.
    [14] F.K. Bentley, A. Zurbriggen, A. Melis, Heterologous Expression of the Mevalonic Acid Pathway in Cyanobacteria Enhances Endogenous Carbon Partitioning to Isoprene, Mol Plant 7(1) (2014) 71-86.
    [15] J.W.K. Oliver, S. Atsumi, Metabolic design for cyanobacterial chemical synthesis, Photosynth Res 120(3) (2014) 249-261.
    [16] S.H. Desai, S. Atsumi, Photosynthetic approaches to chemical biotechnology, Curr Opin Biotech 24(6) (2013) 1031-1036.
    [17] J. Zhou, H.F. Zhang, H.K. Meng, Y.P. Zhang, Y. Li, Production of optically pure D-lactate from CO2 by blocking the PHB and acetate pathways and expressing D-lactate dehydrogenase in cyanobacterium Synechocystis sp PCC 6803, Process Biochem 49(12) (2014) 2071-2077.
    [18] A.M. Varman, Y. Yu, L. You, Y.J.J. Tang, Photoautotrophic production of D-lactic acid in an engineered cyanobacterium, Microb Cell Fact 12 (2013).
    [19] D.C. Ducat, J.A. Avelar-Rivas, J.C. Way, P.A. Silver, Rerouting Carbon Flux To Enhance Photosynthetic Productivity, Appl Environ Microb 78(8) (2012) 2660-2668.
    [20] J. Zhou, T.C. Zhu, Z. Cai, Y. Li, From cyanochemicals to cyanofactories: a review and perspective, Microb Cell Fact 15 (2016).
    [21] C.J. Ramey, A. Baron-Sola, H.R. Aucoin, N.R. Boyle, Genome engineering in cyanobacteria: Where we are and where we need to go., ACS Synth. Biol. 4(11) (2015) 1186-1196.
    [22] T. Kusakabe, T. Tatsuke, K. Tsuruno, Y. Hirokawa, S. Atsumi, J.C. Liao, T. Hanai, Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light, Metab. Eng. 20 (2013) 101-108.
    [23] L. Cong, F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, F. Zhang, Multiplex genome engineering using CRISPR/Cas systems., Science 339(6121) (2013) 819-823.
    [24] P. Mali, L. Yang, K.M. Esvelt, J. Aach, M. Guell, J.E. DiCarlo, J.E. Norville, G.M. Church, RNA-guided human genome engineering via Cas9, Science 339(6121) (2013) 823-826.
    [25] D.H.H. Kira S. Makarova, Rodolphe Barrangou, Stan J. J. Brouns,, P.H. Emmanuelle Charpentier, Sylvain Moineau,, Y.I.W. Francisco J. M. Mojica, Alexander F. Yakunin, John van der Oost, a.E.V. Koonin, 2011 Evolution and classification of the CRISPR-Cas systems, MICROBIOLOGY 9 467-477.
    [26] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science 337(6096) (2012) 816-21.
    [27] E. Deltcheva, K. Chylinski, C.M. Sharma, K. Gonzales, Y. Chao, Z.A. Pirzada, M.R. Eckert, J. Vogel, E. Charpentier, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature 471(7340) (2011) 602-7.
    [28] S.J.J. Brouns, M.M. Jore, M. Lundgren, E.R. Westra, R.J.H. Slijkhuis, A.P.L. Snijders, M.J. Dickman, K.S. Makarova, E.V. Koonin, J. van der Oost, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science 321(5891) (2008) 960-964.
    [29] C.R. Hale, P. Zhao, S. Olson, M.O. Duff, B.R. Graveley, L. Wells, R.M. Terns, M.P. Terns, RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex, Cell 139(5) (2009) 945-956.
    [30] K.S. Makarova, D.H. Haft, R. Barrangou, S.J.J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F.J.M. Mojica, Y.I. Wolf, A.F. Yakunin, J. van der Oost, E.V. Koonin, Evolution and classification of the CRISPR-Cas systems, Nat Rev Microbiol 9(6) (2011) 467-477.
    [31] J.E. DiCarlo, J.E. Norville, P. Mali, X. Rios, J. Aach, G.M. Church, Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic acids research 41(7) (2013) 4336-4343.
    [32] Patrick D. Hsu, Eric S. Lander, F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering., Cell 157(6) (2014) 1262-1278.
    [33] L. Xu, K.H. Park, L. Zhao, J. Xu, M. El Refaey, Y. Gao, H. Zhu, J. Ma, R. Han, CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice., Mol. Ther. 24(3) (2016) 564-569.
    [34] M.L. Maeder, C.A. Gersbach, Genome-editing technologies for gene and cell therapy., Mol Ther 24(3) (2016) 430-446.
    [35] L. Lv, Y.-L. Ren, J.-C. Chen, Q. Wu, G.-Q. Chen, Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis, Metab. Eng. 29 (2015) 160-168.
    [36] L.S. Qi, M.H. Larson, L.A. Gilbert, J.A. Doudna, J.S. Weissman, A.P. Arkin, W.A. Lim, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell 152(5) (2013) 1173-1183.
    [37] F.A.R. Le Cong, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, Patrick D. Hsu, Xuebing Wu, Wenyan Jiang, Luciano A. Marraffini, Feng Zhang, Multiplex Genome Engineering Using CRISPR/Cas Systems, Science 339(6121) (2013) 819-823.
    [38] B.P. Kleinstiver, M.S. Prew, S.Q. Tsai, V.V. Topkar, N.T. Nguyen, Z. Zheng, A.P. Gonzales, Z. Li, R.T. Peterson, J.R. Yeh, M.J. Aryee, J.K. Joung, Engineered CRISPR-Cas9 nucleases with altered PAM specificities, Nature 523(7561) (2015) 481-5.
    [39] F.A. Ran, L. Cong, W.X. Yan, D.A. Scott, J.S. Gootenberg, A.J. Kriz, B. Zetsche, O. Shalem, X. Wu, K.S. Makarova, E.V. Koonin, P.A. Sharp, F. Zhang, In vivo genome editing using Staphylococcus aureus Cas9, Nature 520(7546) (2015) 186-91.
    [40] B.P. Kleinstiver, M.S. Prew, S.Q. Tsai, N.T. Nguyen, V.V. Topkar, Z. Zheng, J.K. Joung, Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition, Nat Biotechnol 33(12) (2015) 1293-1298.
    [41] L.S. Qi, M.H. Larson, L.A. Gilbert, J.A. Doudna, J.S. Weissman, A.P. Arkin, W.A. Lim, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell 152(5) (2013) 1173-83.
    [42] M.H. Larson, L.A. Gilbert, X. Wang, W.A. Lim, J.S. Weissman, L.S. Qi, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat Protoc 8(11) (2013) 2180-2196.
    [43] N.E. Nozzi, S. Atsumi, Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria, ACS Synthetic Biology 4(11) (2015) 1197-1204.
    [44] J.W.K. Oliver, I.M.P. Machado, H. Yoneda, S. Atsumi, Cyanobacterial conversion of carbon dioxide to 2,3-butanediol, Proceedings of the National Academy of Sciences 110(4) (2013) 1249-1254.
    [45] A.E. Case, S. Atsumi, Cyanobacterial chemical production, J Biotechnol 231 (2016) 106-114.
    [46] S.A. Angermayr, A.G. Rovira, K.J. Hellingwerf, Metabolic engineering of cyanobacteria for the synthesis of commodity products, Trends Biotechnol 33(6) (2015) 352-361.
    [47] M. Griese, C. Lange, J. Soppa, Ploidy in cyanobacteria, FEMS Microbiology Letters 323(2) (2011) 124-131.
    [48] S. Aziz, V. Pecoraro, K. Zerulla, C. Lange, J. Soppa, Quantification of Ploidy in Proteobacteria Revealed the Existence of Monoploid, (Mero-)Oligoploid and Polyploid Species, Plos One 6(1) (2011) e16392.
    [49] W. Jiang, D. Bikard, D. Cox, F. Zhang, L.A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nature biotechnology 31(3) (2013) 233-9.
    [50] M.E. Pyne, M. Moo-Young, D.A. Chung, C.P. Chou, Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli, Applied and environmental microbiology 81(15) (2015) 5103-14.
    [51] Y. Li, Z. Lin, C. Huang, Y. Zhang, Z. Wang, Y.J. Tang, T. Chen, X. Zhao, Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing, Metabolic engineering 31 (2015) 13-21.
    [52] C.H. Huang, C.R. Shen, H. Li, L.Y. Sung, M.Y. Wu, Y.C. Hu, CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S-elongatus PCC 7942, Microb Cell Fact 15 (2016).
    [53] Elbashir, Jens Harborth, Winfried Lendeckel, Abdullah Yalcin, K.W.T. Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature Biotechnology 411 (2001) 494-498.
    [54] G.T. Meister, T., Mechanisms of gene silencing by double-stranded RNA, Nature 431 (2004) 343-349.
    [55] J. Joung, S. Konermann, J.S. Gootenberg, O.O. Abudayyeh, R.J. Platt, M.D. Brigham, N.E. Sanjana, F. Zhang, Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening, Nat Protoc 12(4) (2017) 828-863.
    [56] Y. Cao, R. Zhang, C. Sun, T. Cheng, Y. Liu, M. Xian, Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes, BioMed research international 2013 (2013) 723412.
    [57] M. Tomohisa Hasunuma , AkihikoKondo, Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism, Metabolic Engineering Communications 3 (2016) 130-141.
    [58] Y. Tajima, Y. Yamamoto, K. Fukui, Y. Nishio, K. Hashiguchi, Y. Usuda, K. Sode, Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes, Microbial cell factories 14 (2015) 80.
    [59] J. Xu, B.-H. Guo, Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications, in: G.-Q.G. Chen (Ed.), Plastics from Bacteria: Natural Functions and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 347-388.
    [60] Bio-Succinic Acid Market Analysis by Application (BDO, Polyester Polyols, PBS/PBST, Plasticizers, Alkyd Resins) And Segment Forecasts To 2020, GRAND VIEW RESEARCH (2014).
    [61] L. Tretter, A. Patocs, C. Chinopoulos, Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis, Bba-Bioenergetics 1857(8) (2016) 1086-1101.
    [62] Q. Li, B. Huang, H. Wu, Z.M. Li, Q. Ye, Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture, Bioresource Technol 231 (2017) 75-84.
    [63] C. Thakker, I. Martinez, K.Y. San, G.N. Bennett, Succinate production in Escherichia coli, Biotechnol J 7(2) (2012) 213-224.
    [64] K.K. Cheng, G.Y. Wang, J. Zeng, J.A. Zhang, Improved succinate production by metabolic engineering, BioMed research international 2013 (2013) 538790.
    [65] D.C. Ducat, Kick-starting TCA cycling, Metabolic Engineering Communications (2015).
    [66] D. Steinhauser, A.R. Fernie, W.L. Araujo, Unusual cyanobacterial TCA cycles: not broken just different, Trends in plant science 17(9) (2012) 503-9.
    [67] E.L.S. Jacco van Haveren, Johan Sanders, Bulk chemicals from biomass, Biofuels Bioprod
    Bioref 2(1) (2008) 41-57.
    [68] X. Chen, L. Zhou, K. Tian, A. Kumar, S. Singh, B.A. Prior, Z. Wang, Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production, Biotechnol Adv 31(8) (2013) 1200-23.
    [69] M. Kanno, A.L. Carroll, S. Atsumi, Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria, Nat Commun 8 (2017) 14724.
    [70] I. Mougiakos, E.F. Bosma, W.M. de Vos, R. van Kranenburg, J. van der Oost, Next generation prokaryotic engineering: The CRISPR-Cas toolkit., Trends Biotechnol. 34 (2016) 575-587.
    [71] I. Scholz, S.J. Lange, S. Hein, W.R. Hess, R. Backofen, CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC 6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein, PLos One 8 (2013) e56470.
    [72] E. Charpentier, J.A. Doudna, BIOTECHNOLOGY Rewriting a genome, Nature 495(7439) (2013) 50-51.
    [73] E.I. Lan, J.C. Liao, ATP drives direct photosynthetic production of 1-butanol in cyanobacteria, Proceedings of the National Academy of Sciences of the United States of America 109(16) (2012) 6018-23.
    [74] C. Bischoff, J. Luthy, M. Altwegg, F. Baggi, Rapid detection of diarrheagenic E. coli by real-time PCR, J Microbiol Meth. 61(3) (2005) 335-41.
    [75] M. Uyttendaele, S. van Boxstael, J. Debevere, PCR assay for detection of the E. coli O157:H7 eae-gene and effect of the sample preparation method on PCR detection of heat-killed E. coli O157:H7 in ground beef, International journal of food microbiology 52(1-2) (1999) 85-95.
    [76] X. Li, C.R. Shen, J.C. Liao, Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942, Photosynthesis research 120(3) (2014) 301-10.
    [77] L. Yao, I. Cengic, J. Anfelt, E.P. Hudson, Multiple Gene Repression in Cyanobacteria Using CRISPRi, ACS synthetic biology 5(3) (2016) 207-12.
    [78] K.M.K. Jason W. Hickman, Cameron Miller, Paul Warrener, Brett Kaiser,Tracey Jurista, Mark Budde, Fred Cross, James M. Roberts, Michael Carleton, Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942, Algal Research 2(2) (2013) 98-106.
    [79] A.H. Chen, B. Afonso, P.A. Silver, D.F. Savage, Spatial and temporal organization of chromosome duplication and segregation in the cyanobacterium Synechococcus elongatus PCC 7942, PLoS One 7(10) (2012) e47837.
    [80] M. Griese, C. Lange, J. Soppa, Ploidy in cyanobacteria, FEMS Microbiol Lett 323(2) (2011) 124-31.
    [81] W. Jiang, D. Bikard, D. Cox, F. Zhang, L.A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol. 31(3) (2013) 233-239.
    [82] L. Shen, M.A. Macnaughtan, K.M. Frohlich, Y.G. Cong, O.Y. Goodwin, C.W. Chou, L. LeCour, K. Krup, M. Luo, D.K. Worthylake, Multipart Chaperone-Effector Recognition in the Type III Secretion System of Chlamydia trachomatis, J Biol Chem 290(47) (2015) 28141-28155.
    [83] M.E. Pyne, M. Moo-Young, D.A. Chung, C.P. Chou, Coupling the CRISPR/Cas9 System with Lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli., Appl. Environ. Microbiol. 81(15) (2015) 5103-5114.
    [84] S. Turan, C. Zehe, J. Kuehle, J. Qiao, J. Bode, Recombinase-mediated cassette exchange (RMCE) - a rapidly-expanding toolbox for targeted genomic modifications, Gene 515(1) (2013) 1-27.
    [85] M. Matsuoka, Takahama, K., and Ogawa, T., Gene replacement in cyanobacteria mediated by a dominant streptomycin-sensitive rpsl2 gene that allows selection of mutants free from drug resistance markers, Microbiology 147 (2001) 2077-2087.
    [86] C.R. Shen, J.C. Liao, Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase., Energy Environ Sci. 5(11) (2012) 9574-9583.
    [87] J.W. Oliver, I.M. Machado, H. Yoneda, S. Atsumi, Cyanobacterial conversion of carbon dioxide to 2,3-butanediol, Proc Natl Acad Sci USA 110(4) (2013) 1249-1254.
    [88] N.E. Nozzi, S. Atsumi, Genome Engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in cyanobacteria., ACS Synth Biol 4(11) (2015) 1197-204.
    [89] J.T. McEwen, I.M. Machado, M.R. Connor, S. Atsumi, Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions, Applied and environmental microbiology 79(5) (2013) 1668-75.
    [90] U. Nair, C. Thomas, S.S. Golden, Functional elements of the strong psbAI promoter of Synechococcus elongatus PCC 7942, Journal of bacteriology 183(5) (2001) 1740-7.
    [91] E. Suzuki, H. Ohkawa, K. Moriya, T. Matsubara, Y. Nagaike, I. Iwasaki, S. Fujiwara, M. Tsuzuki, Y. Nakamura, Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis, Appl Environ Microbiol 76(10) (2010) 3153-9.
    [92] J.L. Ditty, S.R. Canales, B.E. Anderson, S.B. Williams, S.S. Golden, Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes, Microbiology 151(Pt 8) (2005) 2605-13.
    [93] H. Niederholtmeyer, B.T. Wolfstadter, D.F. Savage, P.A. Silver, J.C. Way, Engineering cyanobacteria to synthesize and export hydrophilic products, Appl Environ Microbiol 76(11) (2010) 3462-6.
    [94] J.W. Oliver, I.M. Machado, H. Yoneda, S. Atsumi, Combinatorial optimization of cyanobacterial 2,3-butanediol production, Metab Eng 22 (2014) 76-82.
    [95] M. Gründel, R. Scheunemann, W. Lockau, Y. Zilliges, Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803, Microbiology 158(12) (2012) 3032-3043.
    [96] D. Carrieri, T. Paddock, P.-C. Maness, M. Seibert, J. Yu, Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage, Energy Environ Sci 5(11) (2012) 9457-9461.
    [97] A.D. van der Woude, S.A. Angermayr, V. Puthan Veetil, A. Osnato, K.J. Hellingwerf, Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant, J. Biotechnol. 184 (2014) 100-102.
    [98] H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr (vol 5, 10719, 2015), Sci Rep-Uk 5 (2015).
    [99] B. Bakondi, W. Lv, B. Lu, M.K. Jones, Y. Tsai, K.J. Kim, R. Levy, A.A. Akhtar, J.J. Breunig, C.N. Svendsen, S. Wang, In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa., Mol Ther 24(3) (2016) 556-563.
    [100] M. Muller, C.M. Lee, G. Gasiunas, T.H. Davis, T.J. Cradick, V. Siksnys, G. Bao, T. Cathomen, C. Mussolino, Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome, Mol. Ther. 24(3) (2016) 636-644.
    [101] A. Vojta, P. Dobrinic, V. Tadic, L. Bockor, P. Korac, B. Julg, M. Klasic, V. Zoldos, Repurposing the CRISPR-Cas9 system for targeted DNA methylation, Nucleic acids research 44(12) (2016) 5615-5628.
    [102] M.-E. Chung, I.-H. Yeh, L.-Y. Sung, M.-Y. Wu, Y.-P. Chao, I.-S. Ng, Y.-C. Hu, Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9., Biotechnol. Bioeng. Epub ahead of print. (2016).
    [103] Y. Wang, Z.-T. Zhang, S.-O. Seo, K. Choi, T. Lu, Y.-S. Jin, H.P. Blaschek, Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system, J. Biotechnol. 200 (2015) 1-5.
    [104] R.E. Cobb, Y. Wang, H. Zhao, High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system, ACS Synth. Biol. 4(6) (2015) 723-728.
    [105] H. Huang, G. Zheng, W. Jiang, H. Hu, Y. Lu, One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces, Acta Biochim Biophys Sin (Shanghai) 47(4) (2015) 231-243.
    [106] J.H. Oh, J.P. van Pijkeren, CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri, Nucleic acids research 42(17) (2014) e131.
    [107] Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Applied and environmental microbiology 81(7) (2015) 2506-14.
    [108] C. Hildenbrand, T. Stock, C. Lange, M. Rother, J. Soppa, Genome copy numbers and gene conversion in methanogenic archaea, J. Bacteriol. 193(3) (2011) 734-743.
    [109] C. Lange, K. Zerulla, S. Breuert, J. Soppa, Gene conversion results in the equalization of genome copies in the polyploid haloarchaeon Haloferax volcanii, Mol Microbiol 80(3) (2011) 666-77.
    [110] S.A. Angermayr, A. Gorchs Rovira, K.J. Hellingwerf, Metabolic engineering of cyanobacteria for the synthesis of commodity products, Trends Biotechnol 33(6) (2015) 352-61.
    [111] A.M. Ruffing, H.D. Jones, Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942, Biotechnology and bioengineering 109(9) (2012) 2190-9.
    [112] M.H. Larson, L.A. Gilbert, X. Wang, W.A. Lim, J.S. Weissman, L.S. Qi, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protocols 8(11) (2013) 2180-2196.
    [113] S. Atsumi, W. Higashide, J.C. Liao, Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde, Nat Biotechnol 27(12) (2009) 1177-1180.
    [114] S. Ma, J. Chang, X. Wang, Y. Liu, J. Zhang, W. Lu, J. Gao, R. Shi, P. Zhao, Q. Xia, CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori, Sci. Rep. 4 (2014) 4489.
    [115] S. Kiani, A. Chavez, M. Tuttle, R.N. Hall, R. Chari, D. Ter-Ovanesyan, J. Qian, B.W. Pruitt, J. Beal, S. Vora, J. Buchthal, E.J.K. Kowal, M.R. Ebrahimkhani, J.J. Collins, R. Weiss, G. Church, Cas9 gRNA engineering for genome editing, activation and repression, Nat Meth 12(11) (2015) 1051-1054.
    [116] J.G. Doench, E. Hartenian, D.B. Graham, Z. Tothova, M. Hegde, I. Smith, M. Sullender, B.L. Ebert, R.J. Xavier, D.E. Root, Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation, Nat. Biotechnol. 32(12) (2014) 1262-1267.
    [117] Y. Fu, J.D. Sander, D. Reyon, V.M. Cascio, J.K. Joung, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat Biotech 32(3) (2014) 279-284.
    [118] F.A. Ran, Patrick D. Hsu, C.-Y. Lin, Jonathan S. Gootenberg, S. Konermann, A.E. Trevino, David A. Scott, A. Inoue, S. Matoba, Y. Zhang, F. Zhang, Double nicking by RNA-Guided CRISPR Cas9 for enhanced genome editing specificity., Cell 154(6) (2013) 1380-1389.
    [119] B. Chen, J. Hu, R. Almeida, H. Liu, S. Balakrishnan, C. Covill-Cooke, W.A. Lim, B. Huang, Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci, Nucleic acids research Epub ahead of print (2016).
    [120] X.Y. Gao, T. Sun, G.S. Pei, L. Chen, W.W. Zhang, Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals, Applied Microbiology and Biotechnology 100(8) (2016) 3401-3413.
    [121] J.T. Broddrick, B.E. Rubin, D.G. Welkie, N. Du, N. Mih, S. Diamond, J.J. Lee, S.S. Golden, B.O. Palsson, Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis, Proc Natl Acad Sci U S A 113(51) (2016) E8344-E8353.
    [122] H.J. Lee, J. Son, S.J. Sim, H.M. Woo, Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria, Plant Biotechnol J 18(9) (2020) 1860-1868.
    [123] S. Stephens, R. Mahadevan, D.G. Allen, Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review, Front Bioeng Biotechnol 8 (2020) 610723.
    [124] S. Roussou, A. Albergati, F. Liang, P. Lindblad, Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production, Metab Eng Commun 12 (2021) e00161.
    [125] M.A. Kolman, C.N. Nishi, M. Perez-Cenci, G.L. Salerno, Sucrose in cyanobacteria: from a salt-response molecule to play a key role in nitrogen fixation, Life (Basel) 5(1) (2015) 102-26.
    [126] C. Qiao, Y. Duan, M. Zhang, M. Hagemann, Q. Luo, X. Lu, Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942, Appl Environ Microbiol 84(2) (2018).
    [127] M.M. Bomgardner, Biobased Summer, Chemcal & Engineering News, 2012, pp. 10-15.
    [128] I.S. Ng, B.B. Keskin, S.I. Tan, A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria, Biotechnol J 15(8) (2020) e1900228.
    [129] M.M. Matson, S. Atsumi, Photomixotrophic chemical production in cyanobacteria, Curr Opin Biotechnol 50 (2018) 65-71.
    [130] M. Kanno, S. Atsumi, Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production, ACS Synth Biol 6(1) (2017) 69-75.
    [131] S. Alagesan, S.B. Gaudana, A. Sinha, P.P. Wangikar, Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions, Photosynth Res 118(1-2) (2013) 191-8.
    [132] L. Yao, K. Shabestary, S.M. Bjork, J. Asplund-Samuelsson, H.N. Joensson, M. Jahn, E.P. Hudson, Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes, Nat Commun 11(1) (2020) 1666.
    [133] I.H. Kohler, U.M. Ruiz-Vera, A. VanLoocke, M.L. Thomey, T. Clemente, S.P. Long, D.R. Ort, C.J. Bernacchi, Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions, J Exp Bot 68(3) (2017) 715-726.
    [134] Y. Jeong, S.H. Cho, H. Lee, H.K. Choi, D.M. Kim, C.G. Lee, S. Cho, B.K. Cho, Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria, Microorganisms 8(12) (2020).
    [135] S.A. Angermayr, A.D. van der Woude, D. Correddu, A. Vreugdenhil, V. Verrone, K.J. Hellingwerf, Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803, Biotechnol Biofuels 7 (2014) 99.
    [136] A.S. Wong, G.C. Choi, C.H. Cui, G. Pregernig, P. Milani, M. Adam, S.D. Perli, S.W. Kazer, A. Gaillard, M. Hermann, A.K. Shalek, E. Fraenkel, T.K. Lu, Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM, Proc Natl Acad Sci U S A 113(9) (2016) 2544-9.
    [137] Z. Gao, H. Zhao, Z. Li, X. Tan, X. Lu, Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria, Energy Environ. Sci. 5(12) (2012) 9857-9865.
    [138] M. Ciebiada, K. Kubiak, M. Daroch, Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms, Int J Mol Sci 21(19) (2020).
    [139] Y. Duan, Q. Luo, F. Liang, X. Lu, Sucrose secreted by the engineered cyanobacterium and its fermentability, Journal of Ocean University of China 15(5) (2016) 890-896.
    [140] S.Y. Choi, H.M. Woo, CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria, ACS Synth Biol 9(9) (2020) 2351-2361.
    [141] D. Liu, V.M. Johnson, H.B. Pakrasi, A Reversibly Induced CRISPRi System Targeting Photosystem II in the Cyanobacterium Synechocystis sp. PCC 6803, ACS Synth Biol 9(6) (2020) 1441-1449.
    [142] D. Jaiswal, A. Sengupta, S. Sengupta, S. Madhu, H.B. Pakrasi, P.P. Wangikar, A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801, Sci Rep 10(1) (2020) 191.
    [143] A. Sengupta, P. Pritam, D. Jaiswal, A. Bandyopadhyay, H.B. Pakrasi, P.P. Wangikar, Photosynthetic Co-Production of Succinate and Ethylene in A Fast-Growing Cyanobacterium, Synechococcus elongatus PCC 11801, Metabolites 10(6) (2020).
    [144] N. Vikromvarasiri, T. Shirai, A. Kondo, Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis, Microb Cell Fact 20(1) (2021) 196.
    [145] A.H. Elvi Restiawaty, Novaldio Rizki, Fauz Irfan Rafi, Modelling and Simulation of Biobutanol Fermentation by Clostridium saccharoperbutylacetonicum N1-4, IOP Conf. Series: Materials Science and Engineering 1143 (2021).
    [146] A. Sahu, M.A. Blatke, J.J. Szymanski, N. Topfer, Advances in flux balance analysis by integrating machine learning and mechanism-based models, Comput Struct Biotechnol J 19 (2021) 4626-4640.

    QR CODE