研究生: |
楊恭洵 Yang, Kung Hsun |
---|---|
論文名稱: |
製備具形狀控制的氧化亞銅包銀包金核殼結構並探討其晶面光學及光熱性質 Synthesis of shape-controlled Au@Ag–Cu2O core–shell nanostructures and the examination of their facet-dependent optical and photothermal properties |
指導教授: |
黃暄益
Huang, Hsuan Yi |
口試委員: |
徐雍鎣
李紫原 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 晶面性質 、核殼結構 、光學性質 、光熱效應 、形狀控制 |
外文關鍵詞: | facet-dependent property, core-shell structure, optical property, photothermal effect, shape-controlled |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文研究中,分別使用邊長為 38、42、50 奈米的立方體銀包金奈米粒子作為核,組成具形狀及大小控制的氧化亞銅包銀包金核殼結構,藉此檢測其晶面光學性質。舉例來說,邊長 42 奈米的銀包金奈米粒子,其表面電漿共振吸收位置在 485 奈米,當包覆上不同形狀的氧化亞銅後,因其周圍環境之介電常數的改變,使得其紫外-可見光譜吸收位置會紅位移至 730 (菱形十二面體)、755 (截角八面體)、775 (截半立方體) 奈米,即使氧化亞銅的厚度不斷增加,其吸收位置並未隨之變動,此即為晶面光學效應,由邊長為 38 及 50 奈米的銀包金組成的核殼結構中亦是如此。又因為銀具有很強的表面電漿共振吸收,使得這些氧化亞銅包銀包金奈米粒子相對於氧化亞銅包金奈米粒子展現了更好的光熱性質,而晶面的光熱性質,則表現在銀的表面電漿共振吸收最為遠離激發波長的奈米粒子。在使用邊長為 38 奈米的銀包金為核的奈米粒子中,我們可以看到截半立方體的升溫效果總是比截角八面體還要來得好,即使兩者的表面電漿共振吸收位置幾乎一樣,但此性質在奈米粒子吸收接近激發波長時則看不到此現象,因為所有的奈米粒子皆表現很好的光熱效果。例如使用核邊長為 50 奈米的奈米粒子,在經過 3 分鐘的雷射照射後,溶液溫度可以到達80–95 ºC。
This study examines the facet-dependent optical properties of size-tunable Ag–Cu2O core–shell nanocrystals with 38, 42, and 50 nm cubic Ag cores. The Ag cores were prepared from octahedral Au seeds. The Cu2O shells are single-crystalline. In the case of Au@Ag–Cu2O nanocrystals with 42 nm Ag cores, the Ag surface plasmon resonance (SPR) absorption band at 485 nm has been widely red-shifted to 730, 755, and 775 nm for rhombic dodecahedra, truncated octahedra, and cuboctahedra, respectively, after forming the Cu2O shells. The Ag SPR band positions are mostly fixed despite large changes in the shell thickness, showing the presence of facet-dependent optical properties. Due to the strong Ag SPR band absorption, all samples exhibit a better photothermal activity than that of Au–Cu2O nanocrystals. Facet-dependent heat transmission may be present for particles with Ag SPR band much deviated from the laser wavelength, but this phenomenon is lost for particles with SPR band approaching the excitation wavelength as the particles become highly photothermally efficient to give solution temperatures of 80–95 ºC within 3 min of laser irradiation.
1.Chanda, K.; Rej, S.; Huang, M. H., Chem. Eur. J. 2013, 19, 16036-16043.
2.Chanda, K.; Rej, S.; Huang, M. H., Nanoscale 2013, 5, 12494-12501.
3.Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H., J. Am. Chem. Soc. 2012, 134, 1261-1267.
4.Huang, M. H.; Rej, S.; Hsu, S. C., Chem. Commun. 2014, 50, 1634-1644.
5.Yang, Y. C.; Wang, H. J.; Whang, J.; Huang, J. S.; Lyu, L. M.; Lin, P. H.; Gwo, S.; Huang, M. H., Nanoscale 2014, 6, 4316-4324.
6.Hsu, S. C.; Liu, S. Y.; Wang, H. J.; Huang, M. H., Small 2015, 11, 195-201.
7.Huang, M. H.; Rej, S.; Chiu, C. Y., Small 2015, 11, 2716-2726.
8.Rej, S.; Wang, H. J.; Huang, M. X.; Hsu, S. C.; Tan, C. S.; Lin, F. C.; Huang, J. S.; Huang, M. H., Nanoscale 2015, 7, 11135-11141.
9.Wang, H. J.; Yang, K. H.; Hsu, S. C.; Huang, M. H., Nanoscale 2016, 8, 965-972.
10.Ke, W. H.; Hsia, C. F.; Chen, Y. J.; Huang, M. H., Small 2016, 12, 3530-3534.
11.Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H., J. Am. Chem. Soc. 2011, 133, 1052-1057.
12.Tan, C. S.; Hsu, S. C.; Ke, W. H.; Chen, L. J.; Huang, M. H., Nano Lett 2015, 15, 2155-2160.
13.Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H., Chemistry of Materials 2016, 28, 1574-1580.
14.Zhang, L.; Jing, H.; Boisvert, G.; He, J. Z.; Wang, H., ACS Nano 2012, 6, 3514-3527.
15.Zhang, L.; Blom, D. A.; Wang, H., Chem. Mater. 2011, 23, 4587-4598.
16.Shi, X.; Ji, Y.; Hou, S.; Liu, W.; Zhang, H.; Wen, T.; Yan, J.; Song, M.; Hu, Z.; Wu, X., Langmuir 2015, 31, 1537-1546.
17.Cushing, J. L. S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N., ACS Catal. 2013, 3, 47-51.
18.Kong, L.; Chen, W.; Ma, D.; Yang, Y.; Liu, S.; Huang, S., J. Mater. Chem. 2012, 22, 719-724.
19.Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-J.; Ye, Z.-Z.; Fan, F.-R.; Ren, B.; Tian, Z.-Q., J. Phys. Chem. C 2012, 116, 4477-4483.
20.Jing, H.; Large, N.; Zhang, Q.; Wang, H., J. Phys. Chem. C 2014, 118, 19948-19963.
21.Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J., Small 2010, 6, 2272-2280.
22.Chang, C. C.; Wu, H. L.; Kuo, C. H.; H., H. M., Chem. Mater. 2008, 20, 7570-7574.
23.Chiang, C.; Huang, M. H., Small 2015, 11, 6018-6025.
24.Chu, H. C.; Kuo, C. H.; Huang, M. H., Inorg. Chem. 2006, 45, 808-813.
25.Tsao, Y. C.; Rej, S.; Chiu, C. Y.; Huang, M. H., J. Am. Chem. Soc. 2014, 136, 396-404.
26.Kuo, C. H.; Huang, M. H., J. Phys. Chem. C 2008, 112, 18355-18360.
27.Mayer, K. M.; Hafner, J. H., Chem. Rev. 2011, 111, 3828-3857.
28.Bardhan, R.; Grady, N. K.; Ali, T.; Halas, N. J., ACS Nano 2010, 4, 6169-6179.