簡易檢索 / 詳目顯示

研究生: 陳亭尹
Chen, Ting-Yin
論文名稱: 光偏振調控之電漿子邏輯閘與編/解碼器
Polarization-controlled plasmonic logic gates and en/decoder
指導教授: 黃承彬
Huang, Chen-Bin
口試委員: 李柏璁
Lee, Po-Tsung
張允崇
Chang , Yun-Chorng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 63
中文關鍵詞: 表面電漿極化子光學奈米電路光學邏輯閘電漿波導
外文關鍵詞: surface plasmon polaritons, optical nanocircuits, optical logic gates, plasmonic waveguides
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們基於電漿子雙線傳輸線(two- wire transmission line, TWTL)的結構,利用其獨特的模態選擇性加上些許的幾何變化,在數值模擬以及實際實驗中皆達成了NAND、NOR、XNOR邏輯閘和4對2編碼器(4 to 2 encoder)、2對4解碼器(2 to 4 decoder)邏輯電路的各種狀態且僅使用到單一雷射光源。


    In this work, we numerically and experimentally demonstrate NAND, NOR, XNOR logic gates, and 4 to 2 encoder, 2 to 4 decoder logic circuits based on plasmonic two-wire transmission line. With its unique polarization modal selectivity and some geometrical variation, we have achieved the plasmonic logic gates by just using a single light source

    摘要 i Abstract ii 誌謝 iii 目 錄 v 表目錄 vii 圖目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究目的及動機 3 第二章 研究背景及理論 4 第三章 邏輯閘設計原理及模擬 10 3.1 運算環境 10 3.2 雙線傳輸線設計 11 3.2.1 參數設計 11 3.2.2 天線設計 15 3.3 結構設計 18 3.3.1 NOR gate 21 3.3.2 NAND gate 28 3.3.3 XNOR gate 32 3.3.4 4 to 2 encoder 35 3.3.5 2 to 4 decoder 40 第四章 實驗量測 48 4.1 元件製作 48 4.2 實驗架構 49 4.3 實驗結果 50 第五章 結論與未來展望 56 參考文獻 57

    [1] Wood, R. W. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The Philosophical Magazine, 4(21), 396-402.
    [2] Fano, U. (1936). Some theoretical considerations on anomalous diffraction gratings. Physical review, 50(6), 573.
    [3] Fano, U. (1937). On the anomalous diffraction gratings. II. Physical review, 51(4), 288.
    [4] Fano, U. (1938). On the theory of the intensity anomalies of diffraction. Ann. Phys, 32, 393-443.
    [5] Fano, U. (1941). The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 31(3), 213-222.
    [6] Hessel, A., & Oliner, A. (1965). A new theory of Wood’s anomalies on optical gratings. Applied optics, 4(10), 1275-1297.
    [7] Ritchie, R. H. (1957). Plasma losses by fast electrons in thin films. Physical review, 106(5), 874-881.
    [8] Kretschmann, E., & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 23(12), 2135-2136.
    [9] Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 216(4), 398-410.
    [10] Atwater, H. A. (2007). The promise of plasmonics. Scientific American, 296(4), 56-63.
    [11] Gahagan, K., & Swartzlander, G. (1999). Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. JOSA B, 16(4), 533-537.
    [12] Friese, M., Enger, J., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (1996). Optical angular-momentum transfer to trapped absorbing particles. Physical Review A, 54(2), 1593-1596.
    [13] Juan, M. L., Righini, M., & Quidant, R. (2011). Plasmon nano-optical tweezers. Nature photonics, 5(6), 349-356.
    [14] Friese, M. E., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1998). Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394(6691), 348-350.
    [15] Tsai, W.-Y., Huang, J.-S., & Huang, C.-B. (2014). Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano letters, 14(2), 547-552.
    [16] Liedberg, B., Nylander, C., & Lunström, I. (1983). Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 4, 299-304.
    [17] Maier, S. A., Kik, P. G., & Atwater, H. A. (2002). Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters, 81(9), 1714-1716.
    [18] Jun, Y. C., Kekatpure, R., White, J., & Brongersma, M. (2008). Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Physical Review B, 78(15), 153111.
    [19] Cai, W., Shin, W., Fan, S., & Brongersma, M. L. (2010). Elements for plasmonic nanocircuits with three‐dimensional slot waveguides. Advanced materials, 22(45), 5120-5124.
    [20] Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & Van Hulst, N. F. (2010). Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329(5994), 930-933.
    [21] Auslander, S., Auslander, D., Muller, M., Wieland, M., & Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. Nature, 487(7405), 123-127.
    [22] Hu, Z., Jian, J., Hua, Y., Yang, D., Gao, Y., You, J., Wang, Z., Chang, Y., Yuan, K., & Bao, Z. (2018). DNA colorimetric logic gate in microfluidic chip based on unmodified gold nanoparticles and molecular recognition. Sensors and Actuators B: Chemical, 273, 559-565.
    [23] Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M., & Wineland, D. J. (1995). Demonstration of a fundamental quantum logic gate. Physical review letters, 75(25), 4714.
    [24] Magri, D. C., Brown, G. J., McClean, G. D., & De Silva, A. P. (2006). Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-molecule” prototype. Journal of the American Chemical Society, 128(15), 4950-4951.
    [25] Chen, T. Y., Tyagi, D., Chang, Y. C., & Huang, C. B. (2020). A Polarization-Actuated Plasmonic Circulator. Nano Lett, 20(10), 7543-7549.
    [26] Wu, P.-Y., Chang, Y.-C., & Huang, C.-B. (2022). Broadband plasmonic half-subtractor and digital demultiplexer in pure parallel connections. Nanophotonics, 11(16), 3623-3629.
    [27] Tomiyasu, K. (1950). The effect of a bend and other discontinuities on a two-wire transmission line. Proceedings of the IRE, 38(6), 679-682.
    [28] Kirkscether, E. (1960). Ground constant measurements using a section of balanced two-wire transmission line. IRE Transactions on Antennas and Propagation, 8(3), 307-312.
    [29] Leviatan, Y., & Adams, A. (1982). The response of a two-wire transmission line to incident field and voltage excitation, including the effects of higher order modes. IEEE Transactions on Antennas and Propagation, 30(5), 998-1003.
    [30] Assis, A. K. T., & Mania, A. (1999). Surface charges and electric field in a two-wire resistive transmission line. Revista Brasileira de Ensino de Física, 21(4), 469-475.
    [31] Mbonye, M., Mendis, R., & Mittleman, D. M. (2009). A terahertz two-wire waveguide with low bending loss. Applied Physics Letters, 95(23).
    [32] Asanova, S., Ahyoev, J., Askarbek, N., Suerkulov, S., Asanova, D., & Safaraliev, M. K. (2020). Method for designing drop-of-wire recognition systems on sections of undistorted two-wire power transmission lines. IOP Conference Series: Materials Science and Engineering,
    [33] Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311(5758), 189-193.
    [34] Krenz, P. M., Olmon, R. L., Lail, B. A., Raschke, M. B., & Boreman, G. D. (2010). Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants. Optics express, 18(21), 21678-21686.
    [35] de Souza, J. L., da Costa, K. Q., Dmitriev, V., & Bamberg, F. (2017). Broadband dipole-loop combined nanoantenna fed by two-wire optical transmission line. International Journal of Antennas and Propagation, 2017.
    [36] Ochs, M., Zurak, L., Krauss, E., Meier, J., Emmerling, M., Kullock, R., & Hecht, B. (2021). Nanoscale electrical excitation of distinct modes in plasmonic waveguides. Nano letters, 21(10), 4225-4230.
    [37] Schnell, M., Alonso-Gonzalez, P., Arzubiaga, L., Casanova, F., Hueso, L. E., Chuvilin, A., & Hillenbrand, R. (2011). Nanofocusing of mid-infrared energy with tapered transmission lines. Nature photonics, 5(5), 283-287.
    [38] Ly-Gagnon, D.-S., Balram, K. C., White, J. S., Wahl, P., Brongersma, M. L., & Miller, D. A. (2012). Routing and photodetection in subwavelength plasmonic slot waveguides. Nanophotonics, 1(1), 9-16.
    [39] Krauss, E., Razinskas, G., Köck, D., Grossmann, S., & Hecht, B. (2019). Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice. Nano letters, 19(5), 3364-3369.
    [40] Cao, Y., Nallappan, K., Xu, G., & Skorobogatiy, M. (2022). Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits. Nature Communications, 13(1), 4090.
    [41] Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F. R., & Krenn, J. R. (2005). Silver nanowires as surface plasmon resonators. Phys Rev Lett, 95(25), 257403.
    [42] Zhang, S., Wei, H., Bao, K., Håkanson, U., Halas, N. J., Nordlander, P., & Xu, H. (2011). Chiral surface plasmon polaritons on metallic nanowires. Physical review letters, 107(9), 096801.
    [43] Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., & Ebbesen, T. W. (2005). Channel plasmon-polariton guiding by subwavelength metal grooves. Physical review letters, 95(4), 046802.
    [44] Schnell, M., Alonso-González, P., Arzubiaga, L., Casanova, F., Hueso, L. E., Chuvilin, A., & Hillenbrand, R. (2011). Nanofocusing of mid-infrared energy with tapered transmission lines. Nature photonics, 5(5), 283-287.
    [45] Ly-Gagnon, D.-S., Balram, K. C., White, J. S., Wahl, P., Brongersma, M. L., & Miller, D. A. B. (2012). Routing and photodetection in subwavelength plasmonic slot waveguides. Nanophotonics, 1(1), 9-16.
    [46] Hung, Y.-T., Huang, C.-B., & Huang, J.-S. (2012). Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Optics express, 20(18), 20342-20355.
    [47] Geisler, P., Razinskas, G., Krauss, E., Wu, X. F., Rewitz, C., Tuchscherer, P., Goetz, S., Huang, C. B., Brixner, T., & Hecht, B. (2013). Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. Phys Rev Lett, 111(18), 183901.
    [48] Rewitz, C., Razinskas, G., Geisler, P., Krauss, E., Goetz, S., Pawłowska, M., Hecht, B., & Brixner, T. (2014). Coherent Control of Plasmon Propagation in a Nanocircuit. Physical Review Applied, 1(1).
    [49] Chen, T. Y., Obermeier, J., Schumacher, T., Lin, F. C., Huang, J. S., Lippitz, M., & Huang, C. B. (2019). Modal Symmetry Controlled Second-Harmonic Generation by Propagating Plasmons. Nano Lett, 19(9), 6424-6428.
    [50] Krauss, E., Razinskas, G., Kock, D., Grossmann, S., & Hecht, B. (2019). Reversible Mapping and Sorting the Spin of Photons on the Nanoscale: A Spin-Optical Nanodevice. Nano Lett, 19(5), 3364-3369.
    [51] Dai, W. H., Lin, F. C., Huang, C. B., & Huang, J. S. (2014). Mode conversion in high-definition plasmonic optical nanocircuits. Nano Lett, 14(7), 3881-3886.
    [52] Razinskas, G., Kilbane, D., Melchior, P., Geisler, P., Krauss, E., Mathias, S., Hecht, B., & Aeschlimann, M. (2016). Normal-Incidence PEEM Imaging of Propagating Modes in a Plasmonic Nanocircuit. Nano Lett, 16(11), 6832-6837.
    [53] Wei, H., Wang, Z., Tian, X., Kall, M., & Xu, H. (2011). Cascaded logic gates in nanophotonic plasmon networks. Nat Commun, 2, 387.
    [54] Wei, H., Li, Z., Tian, X., Wang, Z., Cong, F., Liu, N., Zhang, S., Nordlander, P., Halas, N. J., & Xu, H. (2011). Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett, 11(2), 471-475.
    [55] Davis, T. J., Gómez, D. E., & Roberts, A. (2016). Plasmonic circuits for manipulating optical information. Nanophotonics, 6(3), 543-559.
    [56] Sang, Y., Wu, X., Raja, S. S., Wang, C. Y., Li, H., Ding, Y., Liu, D., Zhou, J., Ahn, H., Gwo, S., & Shi, J. (2018). Broadband Multifunctional Plasmonic Logic Gates. Advanced Optical Materials, 6(13).

    QR CODE