研究生: |
陳亭尹 Chen, Ting-Yin |
---|---|
論文名稱: |
光偏振調控之電漿子邏輯閘與編/解碼器 Polarization-controlled plasmonic logic gates and en/decoder |
指導教授: |
黃承彬
Huang, Chen-Bin |
口試委員: |
李柏璁
Lee, Po-Tsung 張允崇 Chang , Yun-Chorng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 表面電漿極化子 、光學奈米電路 、光學邏輯閘 、電漿波導 |
外文關鍵詞: | surface plasmon polaritons, optical nanocircuits, optical logic gates, plasmonic waveguides |
相關次數: | 點閱:41 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們基於電漿子雙線傳輸線(two- wire transmission line, TWTL)的結構,利用其獨特的模態選擇性加上些許的幾何變化,在數值模擬以及實際實驗中皆達成了NAND、NOR、XNOR邏輯閘和4對2編碼器(4 to 2 encoder)、2對4解碼器(2 to 4 decoder)邏輯電路的各種狀態且僅使用到單一雷射光源。
In this work, we numerically and experimentally demonstrate NAND, NOR, XNOR logic gates, and 4 to 2 encoder, 2 to 4 decoder logic circuits based on plasmonic two-wire transmission line. With its unique polarization modal selectivity and some geometrical variation, we have achieved the plasmonic logic gates by just using a single light source
[1] Wood, R. W. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The Philosophical Magazine, 4(21), 396-402.
[2] Fano, U. (1936). Some theoretical considerations on anomalous diffraction gratings. Physical review, 50(6), 573.
[3] Fano, U. (1937). On the anomalous diffraction gratings. II. Physical review, 51(4), 288.
[4] Fano, U. (1938). On the theory of the intensity anomalies of diffraction. Ann. Phys, 32, 393-443.
[5] Fano, U. (1941). The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 31(3), 213-222.
[6] Hessel, A., & Oliner, A. (1965). A new theory of Wood’s anomalies on optical gratings. Applied optics, 4(10), 1275-1297.
[7] Ritchie, R. H. (1957). Plasma losses by fast electrons in thin films. Physical review, 106(5), 874-881.
[8] Kretschmann, E., & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 23(12), 2135-2136.
[9] Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 216(4), 398-410.
[10] Atwater, H. A. (2007). The promise of plasmonics. Scientific American, 296(4), 56-63.
[11] Gahagan, K., & Swartzlander, G. (1999). Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. JOSA B, 16(4), 533-537.
[12] Friese, M., Enger, J., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (1996). Optical angular-momentum transfer to trapped absorbing particles. Physical Review A, 54(2), 1593-1596.
[13] Juan, M. L., Righini, M., & Quidant, R. (2011). Plasmon nano-optical tweezers. Nature photonics, 5(6), 349-356.
[14] Friese, M. E., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1998). Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394(6691), 348-350.
[15] Tsai, W.-Y., Huang, J.-S., & Huang, C.-B. (2014). Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano letters, 14(2), 547-552.
[16] Liedberg, B., Nylander, C., & Lunström, I. (1983). Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 4, 299-304.
[17] Maier, S. A., Kik, P. G., & Atwater, H. A. (2002). Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters, 81(9), 1714-1716.
[18] Jun, Y. C., Kekatpure, R., White, J., & Brongersma, M. (2008). Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Physical Review B, 78(15), 153111.
[19] Cai, W., Shin, W., Fan, S., & Brongersma, M. L. (2010). Elements for plasmonic nanocircuits with three‐dimensional slot waveguides. Advanced materials, 22(45), 5120-5124.
[20] Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & Van Hulst, N. F. (2010). Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329(5994), 930-933.
[21] Auslander, S., Auslander, D., Muller, M., Wieland, M., & Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. Nature, 487(7405), 123-127.
[22] Hu, Z., Jian, J., Hua, Y., Yang, D., Gao, Y., You, J., Wang, Z., Chang, Y., Yuan, K., & Bao, Z. (2018). DNA colorimetric logic gate in microfluidic chip based on unmodified gold nanoparticles and molecular recognition. Sensors and Actuators B: Chemical, 273, 559-565.
[23] Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M., & Wineland, D. J. (1995). Demonstration of a fundamental quantum logic gate. Physical review letters, 75(25), 4714.
[24] Magri, D. C., Brown, G. J., McClean, G. D., & De Silva, A. P. (2006). Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-molecule” prototype. Journal of the American Chemical Society, 128(15), 4950-4951.
[25] Chen, T. Y., Tyagi, D., Chang, Y. C., & Huang, C. B. (2020). A Polarization-Actuated Plasmonic Circulator. Nano Lett, 20(10), 7543-7549.
[26] Wu, P.-Y., Chang, Y.-C., & Huang, C.-B. (2022). Broadband plasmonic half-subtractor and digital demultiplexer in pure parallel connections. Nanophotonics, 11(16), 3623-3629.
[27] Tomiyasu, K. (1950). The effect of a bend and other discontinuities on a two-wire transmission line. Proceedings of the IRE, 38(6), 679-682.
[28] Kirkscether, E. (1960). Ground constant measurements using a section of balanced two-wire transmission line. IRE Transactions on Antennas and Propagation, 8(3), 307-312.
[29] Leviatan, Y., & Adams, A. (1982). The response of a two-wire transmission line to incident field and voltage excitation, including the effects of higher order modes. IEEE Transactions on Antennas and Propagation, 30(5), 998-1003.
[30] Assis, A. K. T., & Mania, A. (1999). Surface charges and electric field in a two-wire resistive transmission line. Revista Brasileira de Ensino de Física, 21(4), 469-475.
[31] Mbonye, M., Mendis, R., & Mittleman, D. M. (2009). A terahertz two-wire waveguide with low bending loss. Applied Physics Letters, 95(23).
[32] Asanova, S., Ahyoev, J., Askarbek, N., Suerkulov, S., Asanova, D., & Safaraliev, M. K. (2020). Method for designing drop-of-wire recognition systems on sections of undistorted two-wire power transmission lines. IOP Conference Series: Materials Science and Engineering,
[33] Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311(5758), 189-193.
[34] Krenz, P. M., Olmon, R. L., Lail, B. A., Raschke, M. B., & Boreman, G. D. (2010). Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants. Optics express, 18(21), 21678-21686.
[35] de Souza, J. L., da Costa, K. Q., Dmitriev, V., & Bamberg, F. (2017). Broadband dipole-loop combined nanoantenna fed by two-wire optical transmission line. International Journal of Antennas and Propagation, 2017.
[36] Ochs, M., Zurak, L., Krauss, E., Meier, J., Emmerling, M., Kullock, R., & Hecht, B. (2021). Nanoscale electrical excitation of distinct modes in plasmonic waveguides. Nano letters, 21(10), 4225-4230.
[37] Schnell, M., Alonso-Gonzalez, P., Arzubiaga, L., Casanova, F., Hueso, L. E., Chuvilin, A., & Hillenbrand, R. (2011). Nanofocusing of mid-infrared energy with tapered transmission lines. Nature photonics, 5(5), 283-287.
[38] Ly-Gagnon, D.-S., Balram, K. C., White, J. S., Wahl, P., Brongersma, M. L., & Miller, D. A. (2012). Routing and photodetection in subwavelength plasmonic slot waveguides. Nanophotonics, 1(1), 9-16.
[39] Krauss, E., Razinskas, G., Köck, D., Grossmann, S., & Hecht, B. (2019). Reversible mapping and sorting the spin of photons on the nanoscale: a spin-optical nanodevice. Nano letters, 19(5), 3364-3369.
[40] Cao, Y., Nallappan, K., Xu, G., & Skorobogatiy, M. (2022). Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits. Nature Communications, 13(1), 4090.
[41] Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F. R., & Krenn, J. R. (2005). Silver nanowires as surface plasmon resonators. Phys Rev Lett, 95(25), 257403.
[42] Zhang, S., Wei, H., Bao, K., Håkanson, U., Halas, N. J., Nordlander, P., & Xu, H. (2011). Chiral surface plasmon polaritons on metallic nanowires. Physical review letters, 107(9), 096801.
[43] Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., & Ebbesen, T. W. (2005). Channel plasmon-polariton guiding by subwavelength metal grooves. Physical review letters, 95(4), 046802.
[44] Schnell, M., Alonso-González, P., Arzubiaga, L., Casanova, F., Hueso, L. E., Chuvilin, A., & Hillenbrand, R. (2011). Nanofocusing of mid-infrared energy with tapered transmission lines. Nature photonics, 5(5), 283-287.
[45] Ly-Gagnon, D.-S., Balram, K. C., White, J. S., Wahl, P., Brongersma, M. L., & Miller, D. A. B. (2012). Routing and photodetection in subwavelength plasmonic slot waveguides. Nanophotonics, 1(1), 9-16.
[46] Hung, Y.-T., Huang, C.-B., & Huang, J.-S. (2012). Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Optics express, 20(18), 20342-20355.
[47] Geisler, P., Razinskas, G., Krauss, E., Wu, X. F., Rewitz, C., Tuchscherer, P., Goetz, S., Huang, C. B., Brixner, T., & Hecht, B. (2013). Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. Phys Rev Lett, 111(18), 183901.
[48] Rewitz, C., Razinskas, G., Geisler, P., Krauss, E., Goetz, S., Pawłowska, M., Hecht, B., & Brixner, T. (2014). Coherent Control of Plasmon Propagation in a Nanocircuit. Physical Review Applied, 1(1).
[49] Chen, T. Y., Obermeier, J., Schumacher, T., Lin, F. C., Huang, J. S., Lippitz, M., & Huang, C. B. (2019). Modal Symmetry Controlled Second-Harmonic Generation by Propagating Plasmons. Nano Lett, 19(9), 6424-6428.
[50] Krauss, E., Razinskas, G., Kock, D., Grossmann, S., & Hecht, B. (2019). Reversible Mapping and Sorting the Spin of Photons on the Nanoscale: A Spin-Optical Nanodevice. Nano Lett, 19(5), 3364-3369.
[51] Dai, W. H., Lin, F. C., Huang, C. B., & Huang, J. S. (2014). Mode conversion in high-definition plasmonic optical nanocircuits. Nano Lett, 14(7), 3881-3886.
[52] Razinskas, G., Kilbane, D., Melchior, P., Geisler, P., Krauss, E., Mathias, S., Hecht, B., & Aeschlimann, M. (2016). Normal-Incidence PEEM Imaging of Propagating Modes in a Plasmonic Nanocircuit. Nano Lett, 16(11), 6832-6837.
[53] Wei, H., Wang, Z., Tian, X., Kall, M., & Xu, H. (2011). Cascaded logic gates in nanophotonic plasmon networks. Nat Commun, 2, 387.
[54] Wei, H., Li, Z., Tian, X., Wang, Z., Cong, F., Liu, N., Zhang, S., Nordlander, P., Halas, N. J., & Xu, H. (2011). Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett, 11(2), 471-475.
[55] Davis, T. J., Gómez, D. E., & Roberts, A. (2016). Plasmonic circuits for manipulating optical information. Nanophotonics, 6(3), 543-559.
[56] Sang, Y., Wu, X., Raja, S. S., Wang, C. Y., Li, H., Ding, Y., Liu, D., Zhou, J., Ahn, H., Gwo, S., & Shi, J. (2018). Broadband Multifunctional Plasmonic Logic Gates. Advanced Optical Materials, 6(13).