研究生: |
陳曉民 Chen, Hsiao-Min |
---|---|
論文名稱: |
以氧化釓添加氧化鈰擔載銅為觸媒行甲醇蒸氣重組反應之研究 A study of steam reforming of methanol over gadolinia-doped ceria supported Cu catalyst |
指導教授: | 黃大仁 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 甲醇 、蒸氣重組 、銅 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是以GDC(Gadolinia-doped Ceria)為擔體擔載Cu為觸媒針對甲醇蒸汽重組(Steam Reforming of Methanol, SRM)反應進行催化,目的在於生產氫氣並期望降低產物中一氧化碳的濃度。
實驗結果指出,GDC擔載Cu觸媒在210~300℃對於甲醇蒸汽重組有不錯的催化效果,二氧化碳選擇率及氫氣選擇率都在240oC達到最高,但轉化率稍低。藉由提昇Contact-time可以有效提升轉化率達到90%以上,但二氧化碳選擇率會隨之下降,可能原因為水氣含量不足。比較過不同含浸Cu比例(1wt%、3wt%和5wt%)後,可以知道含浸3wt%的Cu在GDC表面可以得到最好的效果,反應溫度為240℃時,可在85%的高轉化率下維持二氧化碳選擇率高達47而氫氣選擇率則可以高達144,CO在出口產物中的比例僅佔0.5%。
在GDC表面先含浸Bi則對於提高二氧化碳選擇率有相當不利的影響,含浸5wt%以上的Bi完全沒有反應活性,而含浸1wt%的Bi雖然有其活性,但與相同條件下僅含浸Cu的觸媒相比,二氧化碳選擇率低了很多。相同反應條件下5Cu-GDC的二氧化碳選擇率為5Cu1Bi-GDC的21倍,因此可以得知加入Bi對於這系列觸媒的表現有極度負面的影響。
1. 王俊修,“以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為研究”,國立清華大學化學工程學系所,碩士論文,民國九十五年。
2. N.M. Sammes, G.A. Tompsett H. Naefe, F. Aldinger, “Bismuth Based Oxide Electrolytes Structure and Ionic Conductivity”, Journal of the European Ceramic Society 19, p.1801 (1999)
3. P. Shuk, H.-D. Wiemhferb, U. Guth, W. Gijpeld, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics 89, p.179 (1996)
4. 黃明祥,“以鎳-鉍混合氧化物行甲烷蒸氣重組之研究”,國立清華大學化學工程學系所,碩士論文,民國九十七年。
5. V. Gil, J. Tartaj, C. Moure, P. Duran, “Sintering, microstructural development, and electrical properties of gadolinia-doped ceria electrolyte with bismuth oxide as sintering aid”, Journal of the European Ceramic Society 26, p.3161 (2006)
6. R. Perez-Hernandez, A. Gutierrez-Martinez, C.E. Gutierrez-Wing, “Effect of Cu loading on CeO2 for hydrogen production by oxidative steam reforming of methanol”, International Journal of Hydrogen Energy 32, p.2888 (2007)
7. 李家府,“以氧化釓添加氧化鈰混何氧化鉍為擔體擔載鎳觸媒行甲烷反應之研究”,國立清華大學化學工程學系所,碩士論文,民國九十六年。
8. S. Assabumrungrat, N. Laosiripojana, V. Pavarajarn, W. Sangtongkitcharoen, A. Tangjitmatee, P. Praserthdam, “Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol”, Journal of Power Source 139, p.55 (2005)
9. 李嘉豪,“以Cu-ZnO/SDC觸媒行部分氧化性甲醇蒸汽重組反應之研究”,國立清華大學化學工程學系所,碩士論文,民國九十二年。
10. S. Patel, K.K. Pant, “Production of Hydrogen With Low Carbon Monoxide Formation Via Catalyst Stream Reforming of Methanol”, Journal of Fuel Cell Science and Technology 3, p.369 (2006)
11. J. B. Wang, C. H. Li, T. J. Huang, “Study of Partial Oxidative Steam Reforming of Methanol over Cu–ZnO/samaria-doped Ceria Catalyst”, Catalysis Letters 103, p.239 (2005)
12. T. J. Huang, J. F. Li, “Effect of Bi2O3 content on characteristics of Bi2O3-GDC systems for direct methane oxidation”, Journal of Power Sources 181, p.62 (2008)
13. J. B. Wang, S. C. Lin, T. J. Huang, “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, Applied Catalysis A: General 232, p.107 (2002)
14. P. H. Matter, U. S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for steam reforming of methanol to H2”, Journal of Catalysis 234, p.463 (2005)
15. C. Cao, G. Xia, J. Holladay, E. Jones, Y. Wang, “Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor”, Applied Catalysis A: General 262, p.19 (2004)
16. S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catalysis Today 129, p.287 (2007)
17. J. K. Lee, J. B. Ko, D. H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Applied Catalysis A: General 278, p.25 (2004)
18. W. Cao, G. Chen, S. Li, Q. Yuan, “Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst”, Chemical Engineering Journal 119, p.93 (2006)
19. G. Busca, U. Costantino, F. Marmottini, T. Montanari, P. Patrono, F. Pinzari, G. Ramis, “Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, Applied Catalysis A: General 310, p.70 (2006)
20. A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande , M. Niederberger, R. Schom□cker, R. Schl□gl, T. Ressler, “Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study”, Journal of Catalysis 230, p.464 (2005)
21. A. Ghosh, S. Hazra, “Mutiphonon hopping transport in Bi2CuO4 single crystal”, Solid State Communication 106, No. 10, p.677 (1998)
22. V. V. Kharton, A. V. Nikolaev, E. N. Naumovich, A. A. Vecher, “Oxygen ion transport and electrode properties of La(Sr)MnO3”, Solid State Ionics 81, p.201 (1995)
23. S. Hazra, A. Ghosh, “Structure and properties of nonconventional glasses in the binary bismuth cuprate system”, Physical Review B 51, p.851 (1995)
24. V. Gil, J. Tartaj, C. Moure, P. Duran, “Rapid densification by using Bi2O3 as an aid for sintering of gadolinia-doped ceria ceramics”, Ceramics International 33, p.471 (2007)
25. S. Hazra, S. Mandal, A. Ghosh, “Transport mechanism in nonconventional bismuth cuprate glass”, Journal of Chemical Physics 104, p.10041 (1996)
26. N. Laosiripojana, S. Assabumrungrat, “The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures”, Chemical Engineering Science 61, p.2540 (2006)
27. N. Laosiripojana, S. Assabumrungrat, “Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC”, Journal of Power Source 163, p.943 (2007)
28. H. Purnamaa, F. Girgsdiesa, T. Resslera, J.H. Schattkab, R.A. Carusob, R. Schomackerc, and R. Schlogl, “Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol”, Catalysis Letters 94, p.61 (2004)
29. C. Z. Yao, L. C. Wang, Y. M. Liu, G. S. Wu, Y. Cao, W. L. Dai, H.Y. He, K. N. Fan, “Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts”, Applied Catalysis A: General 297, p.151 (2006)