研究生: |
張光威 Guang-Wei Chang |
---|---|
論文名稱: |
Birefringence of Crystalline Block Copolymers Templated by Crystallization 結晶行為對半結晶性團聯共聚物雙折射之調控 |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 雙折射 、結晶 、團聯共聚物 |
外文關鍵詞: | birefringence, crystallization, block copolymer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A series of semicrystalline block copolymers, poly(4-vinylpyridine) -block-poly(ε-caprolactone) (P4VP-PCL), with lamellar microstructure have been synthesized. Owing to the vitrified P4VP microdomains and strongly segregated microphase separation, the crystallization of the PCL blocks in P4VP-PCL can be carried out under nanoscale confinement at various temperatures. Specific PCL crystalline orientation can be achieved by confined crystallization under the vitrified P4VP microdomains. Considering the practical applications, large-scale oriented microphase-separated microdomains is required to provide well-defined structure for anisotropic macroscopic properties. A novel orientation process combining rimming coating and shearing was employed to achieve the large-scale orientation for microphase-separated microdomains.
Simultaneous SAXS and WAXD experiments are carried out to examine the anisotropic properties of microphase separated microstructure and corresponding crystalline orientation. The scattering results suggested that the crystalline chains are normal to microphase-separated lamellar microdomains at various temperatures from -10℃ to 40℃ because of the nanoscale confinement for crystallization; namely, a perpendicular orientation can be achieved. As evidenced by DSC measurements, the confined size effect varying from different molecular-weight samples is significant on confined crystallization. Interestingly, as observed by polarized light microscopy, uniform birefringence pattern can be identified in the oriented block copolymer thin films after crystallization.
The birefringence of the crystalline block copolymer thin films was examined as a function of crystallization temperature. Real-time birefringence measurement of the thin-film samples with the crystallization process was obtained by using a polarizer-sample-polarizer system. The enhancement on the birefringence of the block copolymer thin films corresponded well with the increase on the crystallinity of confined crystallization. We speculate that the growth of oriented crystallites with perpendicular morphology is attributed to the confinement effect. As a result, the birefringence of the thin-film samples increased with the crystallinity developing within the confined microdomains because of the specific anisotropic character.
Our results indicated that significant birefringence variation in the semicrystalline P4VP-PCL block copolymers can be templated by controlling the orientation and crystallinity of the crystalline microdomains due to the formation of preferential crystalline orientation. Also, it is noted that this birefringence variation is a reversible process by simply controlling the annealing temperature. Consequently, this block copolymer thin film can provide a temperature-controlled birefringence film and also a controllable birefringence film with the crystallization time because of the unique anisotropic crystallites of confined crystallization.
(1) Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
(2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
(3) Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
(4) Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
(5) Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
(6) Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
(7) (a) Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.; (b)Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
(8) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
(9) Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
(10) Lotz, B.; Kovacs, A. J. ACS Polym. Prepr. 1969, 10, 820.
(11)Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995,
(12)Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phy. Rev. B. 1999, 60, 10022.
(13)Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
(14)Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(15)Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
(16)Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
(17)Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(18)Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
(19)Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
(20)Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
(21)Loo, Y. -L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(22)Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
(23)L. Zhu, P. Huang , S. Z. D.Cheng, Q Ge, R. P. Quirk, E. L. Thomas, B. Lotz, J. C. Wittmann, B. S. Hsiao, F. Yeh, and L. Liu. Phys. Rev. Lett. 2001, 86, 6030.
(24)L. Zhu, P. Huang, W. Y Chen, Q. Ge, R. P. Quirk, S. Z .D Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu. Macromolecules 2002, 35, 3553
(25) L. Zhu, S. Z .D Cheng, Q. Ge, R. P. E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu. Adv. Mater. 2002, 14, 31.
(26)P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B.
(27) J. P. A. Fairclough, S. M. Mai, W. Bras, L. Messe, S. C. Turner, A. J.Gleeson, C. Booth, I. W. Hamley, A. J. Ryan. J. Chem. Phys. 2001, 114, 5425.
(28)P. Rangarajan, R.A. Register, and L. J. Fetters, Macromolecules 1993, 26, 4640.
(29)P. Rangarajan, R.A. Register, D.H. Adamson, L. J. Fetters, W. Bras, S. Naylor, and A. J. Ryan, Macromolecules 1995, 28, 1422.
(30)A. J. Ryan, I. W. Hamley, W. Bras, and F. S. bates, Macromolecules 1995, 28, 3860.
(31)V. Balsamo, G. Gil, C. Urbina de Navarro, I. W. Hamley, F. von Gyldenfldt, V. Abetz and E. Canizales, Macromolecules 2003, 36, 4515.
(32)I. W. Hamley, J. P. A. Fairclough, F. S. bates, and A. J. Ryan, polymer 1998, 39, 1429.
(33)T. Shiomi, H. Tsukuda, H. Takeshida, K. Takenada, and Y. Tezuka, polymer 2001, 42, 4997.
.(34)Y.-L. Loo, R.A. Register, and A. J. Ryan, phys. Rev. Lett. 2000, 84, 4120.
(35) I. W. Hamley, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, P. M. Lipic, F. S. bates, and E. Towns-Andrews, Macromolecules 1996, 29, 8835.
(36) I. W. Hamley, J. P. A. Fairclough, A. J. Ryan, P. M. Lipic, F. S. bates, and E. Towns-Andrews, polymer 1996, 37, 4425.
(37)D. J. Quiram, R.A. Register, G. R. Marchand, and A. J. Ryan, Macromolecules 1997, 30, 8338.
(38) Y.-L. Loo, R.A. Register, D.H. Adamson, Macromolecules 2000, 33, 8361.
(39)S.-M. Mai, J. P. A. Fairclough, K.Viras, P. A. Gorry, I. W. Hamley, A. J. Ryan, and C. Booth, Macromolecules 1997, 30, 8392.
(40)M. Gervais, and B. Gallot, Makromol. Chem. 1973, 25, 5030.
(41) A. J. Ryan, J. P. A. Fairclough, I. W. Hamley, S.-M. Mai, and C. Booth, Macromolecules 1997, 30, 1723.
(42)K. C. Douzinas, and R. E. Cohen, Macromolecules 1992, 25, 5030.
(43) D. J. Quiram, R.A. Register, and G. R.Marchand, Macromolecules 1997, 30, 4551
(44)Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
(45)Loo, Y. -L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(46)P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, L. Liu, and F. Yeh, Macromolecules 2001, 34, 6649
(47)Zhu, L.; Cheng, S. Z-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(48) Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Lotz, B. “Crystalline polymers in nanoscale 1D spatial confinement” Macromolecules 2006, 39, 5782.
(49)S. S. Henkee, E. L. Thomas, L. J. Fetters, Mater. Sci. 1988, 23, 1685.
(50)A. Skoulios. J. Polym. Sci. Polym. Symp. 1977, 58, 369.
(51)G. Hadziioannou, A. Mathis, A. Skoulios. Colloid Polym. Sci.1979, 257, 136.
(52) G. Hadziioannou, A. Mathis,and A. Skoulios. Colloid Polym. Sci.1979, 257, 15.
(53)S. Okamoto, K. Saijo,and T. Hashimoto. Macromolecules 1994, 27, 5547.
(54)G. H. Fredrickson. J. Rheol. 1994, 38, 1045.
(55)A. N. Morozov, J. Fraaije, GEM. Phys. Rev. E 2002, 65, 031803.
(56)Z. R. Chen, and J. A. Kornfield, Polymer 1998, 39, 4679.
(57)I. Hamley. J. Phys: Condens Matter 2001, 13, R643.
(58)Gupta, V. K.; Krishnamoorti, R.; Kornfield, J. A.; Smith, S. D. Macromolecules, Note to appear in Feb 12 issue.
(59)Gupta, V. K.; Krishnamoorti, R.; Kornfield, J. A.; Smith, S. D. Macromolecules 1995, 28, 4464.
(60)Kornfield, J. A.; Gupta, V. K.; Krishnamoorti, R.; Smith, S. D. Macromolecules 1996, 29, 875.
(61)F. A. Morrison, G. L. Bourvellec, and H. H. Winter . J. Appl. Polym. Sci. 1987, 33, 1585.
(62)K. A. Koppi, M. Tirrell, F. S. Bates, K. Almdal, K. Mortensen. J. Rheol. 1994, 38, 999.
(63)V. K. Gupta, R. Krishnamoorti, J. AKornfield, andS. D. Smith, Macromolecules 1995 ,28, 4464.
(64)http://www.olympusmicro.com/primer/lightandcolor/birefringenceintro.html
(65)http://micro.magnet.fsu.edu/primer/lightandcolor/birefringencehome.html
(66)http://en.wikipedia.org/wiki/Birefringence
(67) Englewood Cliffs, NJ/Prentice-Hall/c1992 “Dipole moments and birefringence of polymers”
(68) Eder, G.; Janeschitz-Kriegl, H.; Liedauer, S. Prog. Polym. Sci. 1990, 15, 629.
(69) Jerschow, P.; Janeschitz-Kriegl, H. Int. Polym. Proc. 1997, 1, 72.
(70) Peterlin, A. In Flow Induced Crystallization; Miller, R. L., Ed.; Gordon: New York, 1979.
(71) Larsen, A.; Hande, O. Colloid Polym. Sci. 1993, 271, 277.
(72) Stein, R. S. Newer Methods in Polymer Characterization; Wiley-Interscience: New York, 1964.
(73) Kornfield, J. A.; Lucia, F. B.; Gough, T. J. Synchrotron Rad. 2008, 15, 185.
(74) Rossignol, J. M.; Sequela, R.; Rietsch, F.; Dupuis-Lallemand J. Polym. Sci., Polym. Phys. Ed. 1989, 27, 527.
(75) Chai, C. K.; Creissel, J. Randrianantoandro Polymer 1999, 40, 4431.
(76) Kubo, H.; Okamoto, M.; Kotaka, T. Polymer 1998, 39, 4827; 1998, 39, 501.
(77) Ryu, D. S.; Inoue, T.; Osaki, K. Polymer 1998, 39, 2515.
(78) Kumaraswamy, G.; Issaian, A. M.; Kornfield J. A. Macromolecules 1999, 32, 7537.
(79)G. Floudas, L. Hilliou, D. Lellinger, and I. Alig, Macromolecules 2000, 33,6466.
(80)T. P. Lodge, andG. H. Fredrickson, Macromolecules 1992, 25,5643.
(81)M. Born, E. Wolf, Pergamon Press: New York, 1959; pp 702-705.
(82)K. Hongladarom, V. M. Ugaz, D. K. Cinader, W. R.Burghardt, J. P. Quintana, B. S. Hsiao, M. D. Dadmun, W. A. Hamilton, P. D. Butler, Macromolecules 1996, 29,5346.