簡易檢索 / 詳目顯示

研究生: 謝孟修
Shie, Meng-Shiou
論文名稱: 矽積體光學晶片應用於微小化光學陀螺儀
Silicon integrated photonics for miniaturized optical gyroscopes
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 106
中文關鍵詞: 光纖陀螺儀光波導多模干涉儀相位調變耦合器偏振
外文關鍵詞: Fiber Gyroscope, Optical Wavveguide, MMI, Phase Modulator, Coupler, Polarization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在市面上,常見的慣性導航系統及方位角參考系統,都是由光纖桑亞克效應(Sagnac effect)干涉儀理論衍伸出來的。在科技日新月異的時代裡,人類對科技的需求更多。因此,開發高靈敏度的積體光學晶片,更是勢在必行的。
    在本論文的研究方向是開發積體光學晶片用於微小化光學砣螺儀,初步規劃是除了光纖外,利用矽光子學的技術,把其他的光學元件整合至單一矽晶片上,除了降低各別元件成本外,也可減少光學元件之間的調準。和其他材料如玻璃、鈮酸鋰不同的是,由於矽可製作高侷限性的光波導(線波導),可把光積電路的面積大幅縮小,未來有機會和訊號處理電路整合於單一晶片,而利用成熟的IC製程技術,也可降低生產成本及提升元件性能。
    整個晶片使用FimmWave、FimmProp、BPM、FDTD、Medici模擬出最佳尺寸及參數,並使用CMOS製程的方式製作晶片,最後再做電性及光學檢測。我們的晶片其相位調變可達到80MHz,極化分光偏極器的消光比(Extinction ratio)可達到23dB,介入損耗大約為14dB。


    Highly sensitive gyroscopes are imperative for inertial navigation. Among all kinds of approaches, passive fiber gyros based on Sagnac effect are extensively used. One of the key components inside fiber gyros is the photonic chip mastering optical signal processing.
    In this thesis, we focus on developing silicon-based integrated photonics chips for miniaturized optical gyroscopes. The basic idea is to integrate all optical components, except for the long fiber, on a single silicon chip through CMOS technology. Such integration has advantages in reducing the cost of individual component package and perhaps, the effort of alignment. Moreover, unlike other materials such as silica and lithium niobate, silicon can be utilized to make highly-confined waveguide (silicon photonics wires), dramatically reducing the footprint of the device. Potentially, silicon photonics can monolithically integrate signal-processing circuits on a single chip. Trough mature IC fabrication technology, the production cost could decrease and the device performance improves.
    Several simulation tools including FimmWave, FimmProp, BPM, FDTD, and Medici were used for designing the device, and the fabrication was though a CMOS-compatible process. After the device was fabricated, we measured the electronic and optics characteristics. The phase modulation speed could be as high as 80MHz and the ER (Extinction ratio) of Polarization-Diversity Coupler is 23dB. The measured insertion loss is about 14dB.

    第一章 緒論 1.1 前言 1.2 研究動機與目的 1.3 論文架構 第二章 理論背景 2.1 陀螺儀(Gyroscope) 2.1.1 桑亞克效應(Sagnac effect) 2.1.2 干涉式光纖陀螺的工作原理 2.1.2.1干涉式光纖陀螺的基本輸出 2.1.2.2 偏置調製 2.1.2.3 信號檢測 2.1.2.4 誤差因素 2.2 波導理論與分析 2.2.1 光波導結構與種類 2.2.2 波導傳輸條件 2.2.3 平面波導傳輸模態 2.2.4 彎曲波導 2.3 多模干涉耦合器原理(Multimode interference coupler) 2.3.1 自身成像原理(Self-image princple) 2.3.2 多模干涉耦合器分析 2.3.3 一般干涉(General interference) 2.3.4 限制干涉(Restricted interference) 2.4 矽的光調變機制 2.4.1 Kramers-Kronig relation 2.4.2 自由載子效應(Free Carrier Dispersion Effect) 第三章 晶片設計 3.1 極化分光耦合器(Polarization-Diversity Coupler) 3.2 兩階段式漸變波導區(taper) 3.3 脊狀波導區(rib waveguide) 3.4 多模干涉耦合器區(MMI coupler) 3.5 受彎曲波導區(bending waveguide) 3.6 相位調變區(phase modulator) 第四章 製作流程 4.1 製作流程圖 4.2 晶片製作規劃 第五章 元件量測與分析 5.1實驗架構與量測方法 5.1.1 光波導架構與量測方法 5.1.2 相位調變器架構與量測方法 5.1.3極化分光耦合器(Polarization-Diversity Coupler)量測架構與量測方法 5.2實驗數據與結果分析 5.2.1光波導實驗數據與結果分析 5.1.2 相位調變器實驗數據與結果分析 5.1.3極化分光耦合器(Polarization-Diversity Coupler)量測實驗數據與結果分析 第六章 結論 6.1 結論 6.2 設計元件與實際元件比較 6.3 改進與未來期望 參考文獻

    【1】張桂才、王魏, 譯.光纖陀螺儀,國防工業出版社(2002).
    【2】游俊坤, 光纖陀螺儀,國立中央大學光電科學研究所(2003).
    【3】M.N. Armenise, V.M.N. Passaro, F. De Leonardis, M. Armenise, “Modeling and Design of a Novel Miniaturized Int egrated Optical Sensor for Gyroscope Applications”, J. Lightwave Technology,vol. 19, n. 10, pp. 1476-1494, 2001. 1.
    【4】M.N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, F. Peluso, V.M.N. Passaro, “Micro Gyroscope Technologies for Space Applications”, Internal Report, Esa-Estec Iolg Project, Contract DEE-MI, May 2003.
    【5】R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes”, J. Lightwave Technol., vol. 2, n.2, pp. 91-107, Feb. 1984.
    【6】Sudhakar P. Divakaruni, Ph.D. and Steve J. Sanders, Ph.D. Strategic Sensors, Honeywell Defense and Space “Fiber Optic Gyros – A Compelling Choice for High Precision Applications”, OSA (2006).
    【7】O˘guz Çelikel, “Construction and characterization of interferometric fiber optic gyroscope (IFOG) with erbium doped fiber amplifier (EDFA)”, Opt Quant Electron, vol. 39, pp.147–156 (2007)
    【8】張桂才, 光纖陀螺原理與技術,國防工業出版社(2008).
    【9】Hervé C. Lefèvre1, “Fundamentals of the Interferometric Fiber-Optic Gyroscope”, Optical review, Vol. 4, No. 1A (1997).
    【10】M Tajmar, F Plesescu and B Seifert, “Precision angular velocity response of a fiber-optic gyroscope using a piezo-nano-rotation table”, Measurement Science And Technology(2009).
    【11】G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes”, Applied Optics, Vol.21, No. 10, 15 May 1982.
    【12】William K. Burns, Member, IEEE, Chin-Lin Chen, and R. P. Moeller, “Fiber-optic Gyroscopes with Broad-Band Sources “, J. Lightwave Technology, Vol. LT-1, No. 1, March 1983.
    【13】Bahram Jalali, Mario Paniccia, and Graham Reed, "Silicon photonics," IEEE microwave magazine, 7(3):58-68, 2006.
    【14】湯富福, Y-型光功率分配器之設計與模擬, 國立雲林科技大學 電子工程研究所(2004).
    【15】Jalali, B. and S. Fathpour, "Silicon photonics", Journal of Lightwave Technology, 24(12): 4600-4615, 2006.
    【16】陳意智, 矽光波導元件光損耗研究, 國立中央大學 光電科學研究所(2005)
    【17】王勝聰, 可調式高分子光波導光學衰減器之設計與製作, 國立交通大學 光電工程所(2002).
    【18】Lucas B. Soldano and Erik C. M. Pennings, Member, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications”, Journal of Lightwave Technology, vol. 13, pp. 615-627, Apr 1995.
    【19】R. A. Soref and B. R. Bennett, “Electronoptical Effects in Silicon”, IEEE Journal of Quantum Electronics, vol. 23, pp. 123-129, 1987
    【20】Lipson, M., “Guiding, modulating, and emitting light on silicon - Challenges and opportunities”, Journal of Lightwave Technology, 23(12): 4222-4238,2005.
    【21】Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann, ”Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2”, IEEE J. Of Quantum Electronics, Vol.27, No. 8, August 1991

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE