簡易檢索 / 詳目顯示

研究生: 陸明怡
Lu, Ming-I
論文名稱: 以群眾智慧觀念為基礎之群體意見結論推論模式
Using Collective Intelligence for Opinion Analysis and Tendency Determination
指導教授: 侯建良
Hou, Jiang-Liang
口試委員: 林義貴
蘇哲平
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 324
中文關鍵詞: 意見群眾智慧意見決策
外文關鍵詞: Opinions, Collective Intelligence, Decision Making
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日常生活中,人們於遇到問題或面臨決策時,往往會思索、歸納各種可能之解決方案或意見並從中進行決策,以期找出最適之解決方案而準確且有效的解決問題或達成目標。而在以往之決策過程中,人們總先入為主地假設產生良好決策結論之關鍵在於一適當人選(如專家)或少數能力優異成員之意見或決定。然而,包含專家在內的每一個體對於解決問題所具備之知識往往不盡完備,因此,現行之意見決策模式往往造成單一個體認為可能最合適之決策實則並非為最適決策的問題。
    對於前述之相同決策議題,若能依據「群眾智慧」理論,先讓群體內所有成員皆能在不受他人影響下獨立發表自身意見,再透過適當機制客觀地彙整全體成員之意見,其對應產生之群體決策結論將比群體中最具智慧的個體所下之決策結論更具智慧。因此,本研究乃期望以「群眾智慧」理論為基礎,發展一套「群體意見結論推論」模式與系統技術,以針對人們表達意見時較常採用之文字形式意見,先運用一公正機制客觀地彙整為群體普遍認同之結論與傾向,再將此些較完備之決策結論提供予決策需求者參考。
    為達成前述之研究目標,本研究乃先透過「意見內容解析」階段解析自由形式意見之組成元素(稱「意見表達項目」)並運用統計方法分析各意見表達項目之特性,之後再以各項目之特性為基礎,發展一套「群體意見結論推論」方法論,以依序經由「意見內容結構化呈現」階段針對各自由形式之文字型意見先擷取其關鍵內容並結構化地呈現,再藉由「意見傾向解析與結論呈現」階段運用語意分析方法剖析各意見觀點並進一步收斂群體傾向。最後,本研究再根據所提出之方法論發展對應系統平台,並以現今網路使用者較為熟悉之「Yahoo!奇摩知識+」討論平台的問題與回覆意見為實務案例,驗證本方法論與平台之實效。整體而言,本研究乃期望透過此模式與平台之發展,群體之意見結論得以自動化地被解析、彙整,並提供予人們作為決策時之參考。


    As people need to make decisions or solve problems, they usually collect some opinions or feasible solutions to ensure that they can obtain the best/better solution. People usually think the best/better solution can be generated from one specific domain expert or a small elite group. However, most people (including the domain experts) would not have enough knowledge and skills to solve every problem they face with. On the basis of the collective intelligence (CI), people would have a higher probability to get the best/better solution to solve their problems, if the numerous of opinions from the public can be collected in a fair and objective way.
    Based on the concept of collective intelligence, this research develops a methodology and a platform for public opinion gathering and tendency determination. Before development of the methodology, this research analyzes the key components of opinions and uses the statistical methods to explore the characteristics of each component. On the basis of the key components and their characteristics, this research develops a two-stage methodology for gathering and analyzing the collective intelligence. In first stage of the proposed methodology, the free-form opinions can be converted to the formatted ones. After that, in the second stage, the proposed method extracts the viewpoint and tendency related to each formatted opinion and determines the trend of the pubic in order to support decision making. By utilizing the proposed methodology, this research develops a platform for collective intelligence analysis. Furthermore, a real-world case, Yahoo! Answers (YA), is also used to evaluate the feasibility and performance of the proposed methodology and platform.
    As a whole, by using the proposed methodology and platform, the free-form opinions from users can be converted into structured opinion components and the tendency of group opinions can be automatically derived to support decision making. As a result, people can effectively and efficiently make decisions on the basis of the collective intelligence.

    摘要 I ABSTRACT II 圖目錄 VI 表目錄 XIII 第一章、研究背景 1 1.1研究動機與目的 1 1.2研究步驟 6 1.3研究範圍 9 第二章、文獻回顧 12 2.1群體智慧表達 12 2.1.1以文字表達群體智慧 12 2.1.2以行為表達群體智慧 16 2.1.3以多媒體檔案表達群體智慧 20 2.2群體智慧彙整 24 2.2.1匯集資訊以取得較佳決策 24 2.2.2匯聚資源以獲得更具效益之結果 29 2.3群體智慧系統發展 34 2.3.1探討群體智慧系統之設計方針 34 2.3.2分析群體智慧系統應具備之功能模組 38 2.3.3評估群體智慧系統之運作成效 43 2.4小結 48 第三章、群體意見結論推論模式 50 3.1意見內容解析 51 3.1.1意見文句表達結構定義 52 3.1.2意見表達項目之特性分析 57 3.2意見內容結構化呈現 61 3.3意見傾向解析與結論呈現 68 3.4小結 88 第四章、系統規劃與架構 89 4.1系統核心架構 89 4.2系統功能架構 90 4.3資料模式定義 93 4.4系統功能流程 96 4.4.1系統功能操作流程 96 4.4.2系統資料傳遞流程 99 4.5系統開發工具 100 第五章、系統實作與驗證分析 103 5.1系統運作概況說明 103 5.2系統驗證方式 109 5.3系統驗證結果分析 121 第六章、結論與未來發展 146 6.1論文總結 146 6.2未來展望 149 參考文獻 150 附錄A、意見內容解析 157 A.1意見文句之表達方式定義 157 A.2意見表達項目之特性分析 175 A.2.1項目之出現機率與任兩項目之共現機率特性 175 A.2.2任兩項目之連結關係特性 179 A.2.3項目起始字位置與結尾字位置特性 197 A.2.4項目之文字串長度特性 223 附錄B、系統功能操作說明 245 B.1一般使用者功能 245 B.2系統管理者功能 261 附錄C、系統驗證資料之表達方式解析 266 附錄D、第一階段意見內容結構化之第二次至第五次實驗結果 275 附錄E、第二階段意見內容結構化之五次實驗結果 297

    1. Mobile01討論區,http://www.mobile01.com/。
    2. Yahoo!奇摩知識+,http://tw.knowledge.yahoo.com。
    3. 伊莉討論區,http://www02.eyny.com/index.php。
    4. 吳友仁,2005,「支援企業客服中心運作之自動問答與知識摘要技術」,碩士論文(指導教授:侯建良),國立清華大學工業工程與工程管理學系。
    5. 李靜玟,2009,「提升知識再利用效能之聲音知識語音化—以設備操作手冊為例」,碩士論文(指導教授:侯建良),國立清華大學工業工程與工程管理學系。
    6. 邱偉嘉,2009,「基於讀者回饋探勘有助於新聞社群經營之新聞資訊」,碩士論文(指導教授:陳志銘與劉昭麟),國立政治大學資訊科學學系。
    7. 范嘉仁,2008,「利用大眾分類法改善部落格排名效能」,碩士論文(指導教授:楊鎮華),國立中央大學資訊工程研究所。
    8. 張慈育,2009,「大眾標記法應用於考古文物描述之研究:以國小五年級學生標記十三行博物館文物為例」,碩士論文(指導教授:藍文欽),國立台灣大學圖書資訊學系。
    9. 楊玉齡譯,Surowiecki, James原著,2005,《群眾的智慧:如何讓個人、團隊、企業與社會變得更聰明》,台北市:遠流公司出版社。
    10. 戴瑋,2008,「應用社會化協同標籤於網路資源搜尋」,碩士論文(指導教授:楊鎮華),國立中央大學資訊工程研究所。
    11. Adamic, L. A., Zhang, J., Bakshy, E. and Ackerman, M. S., 2008, “Knowledge sharing and Yahoo Answers: Everyone knows something,” Proceeding of the 17th International Conference on World Wide Web, pp. 665-674.
    12. Agarwala, N., Galanb, M., Liub, H. and Subramanyab, S., 2010, “WisColl: Collective wisdom based blog clustering,” Information Sciences, Vol. 180, No. 1-2, pp. 39-61.
    13. Antoine, N. E., Bieniawski, S. R., Kroo, I. M. and Wolpert, D. H., 2004, “Fleet assignment using collective intelligence,” Proceedings of the 42nd Aerospace Sciences Meeting.
    14. Armstrong, J. S., 2006, “How to make better forecasts and decisions: Avoid face-to-face meetings,” The International Journal of Applied Forecasting, No. 5, pp. 3-15.
    15. Basilico, J. and Hofmann, T., 2004, “Unifying collaborative and content-based filtering,” Proceedings of the 21st International Conference on Machine Learning, pp. 9-16.
    16. Bateman, S., Brooks, C., Mccalla, G. and Brusilovsky, P., 2007, “Applying collaborative tagging to e-learning,” Proceedings of the 16th International World Wide Web Conference, pp. 25-31.
    17. Boschetti, F., 2007, “Improving resource exploitation via collective intelligence by assessing agents' impact on the community outcome,” Ecological Economics, Vol. 63, No. 2-3, pp. 553-562.
    18. Bothos, E., Apostolou, D. and Mentzas, G., 2008, “A collaborative information aggregation system for idea management,” Proceedings of the 2008 Third International Conference on Internet and Web Applications and Services, pp. 289-296.
    19. Brabham, D. C., 2008, “Crowdsourcing as a model for problem solving,” The International Journal of Research into New Media Technologies, Vol. 14, No. 1, pp. 75-90.
    20. Brooks, R. A., Maes, P., Mataric, M. J. and More, G., 2002, “Lunar base construction robots,” Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, pp. 389-392.
    21. Caverlee, J., Liu, L. and Webb, S., 2010, “The SocialTrust framework for trusted social information management: Architecture and algorithm,” Information Sciences, Vol. 180, No. 1-2, pp. 95-112.
    22. Constantinides, E. and Fountain, S. J., 2008, “Web 2.0: Conceptual foundations and marketing issues,” Journal of Direct, Data and Digital Marketing Practice, Vol. 9, No. 3, pp. 231-244.
    23. Detlor, B., 2000, “The corporate portal as information infrastructure: Towards a framework for portal design,” International Journal of Information Management, Vol. 20, No. 2, pp. 91-101.
    24. di Caro, G., Ducatelle, F. and Gambardella, L. M., 2005, “Swarm intelligence for routing in mobile ad hoc networks,” Proceedings of 2005 IEEE Swarm Intelligence Symposium, pp. 76-83.
    25. Ebner, W., Leimeister, M., Bretschneider, U. and Krcmar, H., 2008, “Leveraging the wisdom of crowds: Designing an IT-supported ideas competition for an ERP software company,” Proceedings of the 41st Hawaii International Conference on System Sciences, pp. 417-426.
    26. Fox, G., 2001, “Peer-to-peer networks,” Computing in Science & Engineering, Vol. 3, No. 3, pp. 75-77.
    27. Furtado, V., Ayres, L., de Oliveira, M., Vasconcelos, E., Caminha, C., D’Orleans, J. and Belchior, M., 2010, “Collective intelligence in law enforcement - The WikiCrimes system,” Information Sciences, Vol. 180, No. 1-2, pp. 4-17.
    28. Fuxman, A., Tsaparas, P., Achan, K. and Agrawal, R., 2008, “Using the wisdom of the crowds for keyword generation,” Proceeding of the 17th International Conference on World Wide Web, pp. 61-70.
    29. Girardot, J.-J., 2007, “The editorial function of the territorial intelligence systems,” International Conference of Territorial Intelligence, pp. 255-265.
    30. Greer,J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A. and Vassileva, J., 1998, “The intelligent helpdesk: Supporting peer-help in a university course,” Lecture Notes in Computer Science, Vol. 1452, pp. 494-503.
    31. Gregg, D., 2009, “Developing a collective intelligence application for special education,” Decision Support Systems, Vol. 47, No. 4, pp. 455-465.
    32. Gruber T., 2008, “Collective knowledge systems: Where the social web meets the semantic web,” Web Semantics: Science, Services and Agents on the World Wide Web, Vol. 6, No. 1, pp. 4-13.
    33. Hage, H. and Aïmeur, E., 2008, “Harnessing learner’s collective intelligence: A web2.0 approach to e-learning,” Lecture Notes in Computer Science, Vol. 5091, pp. 438-447.
    34. Hagel, J., 2010, “Net gain: Expanding markets through virtual communities,” Journal of Interactive Marketing, Vol. 13, No. 1, pp. 55-65.
    35. Hars, A. and Ou, S., 2001, “Working for free? Motivations of participating in open source projects,” Proceedings of the 34th Annual Hawaii International Conference on System Sciences.
    36. Heylighen F., 1999, “Collective intelligence and its implementation on the web: Algorithms to develop a collective mental map,” Computational & Mathematical Organization Theory, Vol. 5, No. 3, pp. 253-280.
    37. Hoegg, R., Martignoni, R., Meckel, M. and Stanoevska-Slabeva, K., 2006, “Overview of business models for Web 2.0 communities,” Proceedings of GeNeMe, pp. 23-37.
    38. Hsu, Y. C., Chuang, K. C. and Hon, C. M., 2010, “Approach of applying social collaborative tagging in instructional assessment for computer based training,” Proceedings of the 2010 International Conference on Business and Information.
    39. Hurley, R. F. and Hult, G. T. M., 1998, “Innovation, market orientation, and organizational learning: An integration and empirical examination,” Journal of Marketing, Vol. 62, No. 3, pp. 42-54.
    40. Kamel Boulos, M. N. and Wheeler, S., 2007, “The emerging Web 2.0 social software: An enabling suite of sociable technologies in health and health care education,” Health Information & Libraries Journal, Vol. 24, No. 1, pp. 2-23.
    41. Kapetanios, E., 2008, “Quo Vadis computer science: From Turing to personal computer, personal content and collective intelligence,” Data & Knowledge Engineering, Vol. 67, No. 2, pp. 286-292.
    42. Kittur, A. and Kraut, R. E., 2008, “Harnessing the wisdom of crowds in wikipedia: Quality through coordination,” Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, pp. 37-46.
    43. Klein, M., 2007, “Achieving collective intelligence via large-scale on-line argumentation,” Proceedings of the 2nd International Conference on Internet and Web Applications and Services, pp. 58-62.
    44. Knowles, J., 2007, “A survey of web 2.0 music trends and some implications for tertiary music communities.” Music in Australian Tertiary Institutions: Issues for the 21st Century, Griffith University.
    45. Kozinets, R. V., Hemetsberger, A. and Schau, H., 2008, “The wisdom of consumer crowds: Collective innovation in the age of networked marketing,” Journal of Macromarketing, Vol. 28, No. 4, pp. 339-354.
    46. Kristensson, P., Gustafsson, A. and Archer, T., 2004, “Harnessing the creative potential among users,” Journal of Product Innovation Management, Vol. 21, No. 1, pp. 4-14.
    47. Krogh, G. V. and Hippel, E. V., 2006, “The promise of research on open source software,” Management Science, Vol. 52, No. 7, pp. 975-983.
    48. Lee, J. H. and Chang, M. L., 2009, “Stimulating designers’ creativity based on a creative evolutionary system and collective intelligence in product design,” International Journal of Industrial Ergonomics, Vol. 40, No. 3, pp. 295-305.
    49. Lee, W. H., Tsenga, S. S. and Shiehd, W. Y., 2010, “Collaborative real-time traffic information generation and sharing framework for the intelligent transportation system,” Information Sciences, Vol. 180, No. 1-2, pp. 62-70.
    50. Lin, K. J., 2008, “E-commerce technology: Back to a prominent future,” Internet Computing, Vol. 12, No. 1, pp. 60-65.
    51. Liu, J., Rao, S. G., Li, B. and Zhang, H., 2008, “Opportunities and challenges of peer-to-peer internet video broadcast,” Proceedings of the IEEE, Vol. 96, No. 1, pp. 11-24.
    52. Lopez, M., Isaza, G. and Joyanes, L., 2010, “Towards a knowledge management portal for a local community,” Communications in Computer and Information Science, Vol. 54, No. 6, pp. 357-362.
    53. Lykourentzoua, I., Papadakia, K., Vergadosa, D. J., Polemib, D. and Loumosa, V., 2010, “CorpWiki: A self-regulating wiki to promote corporate collective intelligence through expert peer matching,” Information Sciences, Vol. 180, No. 1-2, pp. 18-38.
    54. Marchetti, A., Tesconi, M., Ronzano, F., Rosella, M. and Minutoli, S., 2007, “SemKey: A semantic collaborative tagging system,” Proceeding of the 2007 Workshop on Tagging and Metadata for Social Information Organization.
    55. Masona, R. and Rennieb, F., 2007, “Using Web 2.0 for learning in the community,” The Internet and Higher Education, Vol. 10, No. 3, pp. 196-203.
    56. McLoughlin, C. and Lee, M. J.W., 2007, “Social software and participatory learning: Pedagogical choices with technology affordances in the Web 2.0 era,” Proceedings of the 2007 Ascilite Singapore, pp. 664-675.
    57. Narasimhan, N., Wodka, J., Wong, P. and Vasudevan, V., 2010, “TV answers - Using the wisdom of crowds to facilitate searches with rich media context,” Proceedings of the 7th IEEE Consumer Communications and Networking Conference, pp. 749-753.
    58. O’reilly, T., 2007, “What is Web 2.0: Design patterns and business models for the next generation of software,” Communications & Strategies, Vol. 65, No. 1, pp. 17-37.
    59. Page, L. and Brin, S., 1998, “The anatomy of a large-scale hypertextual Web search engine,” Computer Networks and ISDN Systems, Vol. 30, No. 1-7, pp. 107-117.
    60. Rasmussen, S., Mangalagiu D., Ziock H., Bollen J. and Keating G., 2007, “Collective intelligence for decision support in very large stakeholder networks: The future US energy system,” Proceedings of the 2007 IEEE Symposium on Artificial Life, pp. 468-475.
    61. Rodriguez, M. A., Steinbock, D. J., Watkins, J. H., Gershenson, C., Bollen, J., Grey, V. and Degraf B., 2007, “Smartocracy: Social networks for collective decision making,” Proceedings of the 40th Annual Hawaii International Conference on System Sciences, pp. 90-97.
    62. Sigurbjörnsson, B. and Zwol, R. V., 2008, “Flickr tag recommendation based on collective knowledge,” Proceeding of the 17th International Conference on World Wide Web, pp. 327-336.
    63. Simon, I. and Seitz, S. M., 2008, “Scene segmentation using the wisdom of crowds,” Proceedings of the 10th European Conference on Computer Vision, pp. 541-553.
    64. Sordo, M., Celma, Ò., Blech, M. and Guaus, E., 2008, “The quest for musical genres: Do the experts and the wisdom of crowds agree?” Proceedings of the 2008 ISMIR on Knowledge Representation, Tags, Metadata, pp. 255-260.
    65. Steinbock, D., Kaplan, C., Rodriguez, M. A., Diaz, J., Der, N. and Garcia, S., 2004, “Collective intelligence quantified for computer-mediated group problem solving,” University of California, Santa Cruz CA.
    66. Stephens, M., 2007, “Web 2.0, library 2.0, and the hyperlinked library,” Serials Review, Vol. 33, No. 4, pp. 253-256.
    67. Su, J. H., Wang, B. W., Hsiao, C. Y. and Tseng, V. S., 2010, “Personalized rough-set-based recommendation by integrating multiple contents and collaborative information,” Information Sciences, Vol. 180, No. 1-2, pp. 113-131.
    68. Tiwana, A., 2003, “Affinity to infinity in peer-to-peer knowledge platforms,” Communications of the ACM - Wireless Networking Security, Vol. 46, No. 5, pp. 76-80.
    69. Tripathia, M. and Kumarb, S., 2010, “Use of Web 2.0 tools in academic libraries: A reconnaissance of the international landscape,” The International Information & Library Review, Vol. 42, No. 3, pp. 195-207.
    70. Velacso, M. and Jukic, N., 2010, “A framework for in-house prediction markets,” Communications in Computer and Information Science, Vol. 87, No. 1, pp. 120-127.
    71. Wang, F. Y., Carley, K. M., Zeng, D. and Mao, W., 2007, “Social computing: From social informatics to social intelligence,” IEEE Intelligent Systems, Vol. 2, No. 2, pp. 79-83.
    72. Watkins, J. H., 2007, “Prediction markets as an aggregation mechanism for collective intelligence,” Proceeding of the 4th Lake Arrowhead Conference on Human Complex Systems.
    73. Wolpert, D. H., Tumer, K. and Frank, J., 1999, “Using collective intelligence to route internet traffic,” Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, pp. 952-958.
    74. Zatarain-Cabada, R., Barron-Estrada, M. L., Zepeda-Sanchez, L., Sandoval G., Osorio-Velazquez, J. M. and Urias-Barrientos, J. E., 2009, "A Kohonen network for modeling students' learning styles in Web 2.0 collaborative learning systems," Proceedings of the 8th Mexican International Conference on Artificial Intelligence, pp. 512-520.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE