研究生: |
郭弈翔 Kuo, I-Hsiang |
---|---|
論文名稱: |
2+1維度的宇宙膨脹偽熵 2+1 Dimensional Pseudo Entropy for Cosmological Expansion |
指導教授: |
朱創新
Chu, Chong-Sun |
口試委員: |
陳江梅
Chen, Chiang-Mei 張敬民 Cheung, Kingman |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 糾纏熵 、偽熵 、宇宙膨脹度規 |
外文關鍵詞: | Entanglement entropy, Pseudo entropy, Cosmological expansion metirc |
相關次數: | 點閱:14 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
偽熵是一個取決於初始態和最終態,推廣糾纏熵的新量度。基於已知結果表
明量子纏繞熵和偽熵均具有面積定律特性,我們對一個(2 + 1)維度的宇宙膨
脹度規進行了測試,以確定面積定律的有效性以及時間因素對偽熵值的影響。
此外,我們引入了量子猝滅的概念,以進一步探索可能存在的有趣現象。
Pseudo entropy is a novel quantity that generalizes the concept of entanglement
entropy, depending on both an initial state and a final state. Based on the wellknown
results indicating that both entanglement entropy and pseudo entropy
exhibit the area law property, we conducted tests on a (2+1)-dimensional cosmological
expansion metric to determine the validity of the area law and how the time
factor affects the value of pseudo entropy. Additionally, we analysis the concept
of quantum quench to further explore any potential interesting phenomena.
[1] Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi. Holographic Entanglement
Entropy: An Overview. J. Phys. A, 42:504008, 2009.
[2] Mukund Rangamani and Tadashi Takayanagi. Holographic Entanglement
Entropy, volume 931. Springer, 2017.
[3] Yoshifumi Nakata, Tadashi Takayanagi, Yusuke Taki, Kotaro Tamaoka, and
Zixia Wei. New holographic generalization of entanglement entropy. Phys.
Rev. D, 103:026005, Jan 2021.
[4] Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, Kotaro Tamaoka, and
Zixia Wei. Aspects of pseudoentropy in field theories. Phys. Rev. Res.,
3(3):033254, 2021.
[5] Mark Srednicki. Entropy and area. Phys. Rev. Lett., 71:666–669, Aug 1993.
[6] H. Casini and M. Huerta. Entanglement entropy in free quantum field theory.
J. Phys. A, 42:504007, 2009.
[7] Rodolfo R. Soldati. Entanglement entropy in quantum field theory.
[8] W. H. Zurek. Entropy evaporated by a black hole. Phys. Rev. Lett., 49:1683–
1686, Dec 1982.
[9] R. Lohmayer, H. Neuberger, A. Schwimmer, and S. Theisen. Numerical determination
of entanglement entropy for a sphere. Phys. Lett. B, 685:222–227,
2010.
[10] Ingo Peschel. Calculation of reduced density matrices from correlation functions.
Journal of Physics A: Mathematical and General, 36(14):L205–L208,
mar 2003.
[11] Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, Kotaro Tamaoka, and
Zixia Wei. Pseudo-entropy in free quantum field theories. Phys. Rev. Lett.,
126:081601, Feb 2021.
[12] Temple He, Javier M. Magan, and Stefan Vandoren. Entanglement Entropy
in Lifshitz Theories. SciPost Phys., 3(5):034, 2017.
[13] M. Reza Mohammadi Mozaffar and Ali Mollabashi. Entanglement in Lifshitztype
Quantum Field Theories. JHEP, 07:120, 2017.
[14] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner. Entanglement
properties of the harmonic chain. Phys. Rev. A, 66:042327, Oct 2002.
[15] Pasquale Calabrese and John Cardy. Quantum quenches in 1 + 1 dimensional
conformal field theories. J. Stat. Mech., 1606(6):064003, 2016.
[16] Pasquale Calabrese and John Cardy. Quantum Quenches in Extended Systems.
J. Stat. Mech., 0706:P06008, 2007.
[17] Pasquale Calabrese and John Cardy. Time dependence of correlation functions
following a quantum quench. Phys. Rev. Lett., 96:136801, Apr 2006.