簡易檢索 / 詳目顯示

研究生: 林文琦
Wen-Chi Lin
論文名稱: 利用可程式和差調變器強化頻率解析度之數位控制震盪器
A Resolution-Enhanced Digitally Controlled Oscillator by Programmable Σ-Δ Modulator
指導教授: 柏振球
Jenn-Chyou Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 97
中文關鍵詞: 數位控制震盪器和差調變器
外文關鍵詞: Digitally Controlled Oscillator, Σ-Δ Modulator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主題為設計一個利用可程式和差調變器強化頻率解析度之數位控制震盪器 (resolution-enhanced DCO),其適用於頻段範圍介於2.4-2.5十億赫茲之無線射頻系統,包含藍芽和手機等通訊應用。此設計架構使用數位控制介面,因此避免了任何的類比控制訊號所帶來的雜訊而達到更線性穩定的輸出頻率,並且能運用於全數位式鎖相迴路 (ADPLL) 的電路設計架構之中。數位控制震盪器採用新式的切換電容設計,透過數位訊號控制三級電容切換陣列,以提供更精確的頻率解析度,達到寬廣且線性的震盪頻段。電路中所需要的最小切換電容值為30 aF,可達到10千赫茲的頻率解析度。並且利用三階可程式和差調變器高速切換電容陣列以強化頻率解析度,利用平均的概念達到最精細的頻率解析度,此可程式和差調變器利用數位控制訊號適當的修改調變器的雜訊函數。整個數位控制震盪器經過模擬後利用台灣積體電路公司的互補式金氧半(CMOS) 0.18微米製程實現,整個晶片面積為0.99 x 0.98 平方微米。量測到的頻率震盪範圍為147百萬赫茲,最小的電容切換可得到的頻率解析度為29 KHz,震盪器的相位雜訊在偏離中心載波頻率500 KHz低於 -110 dBc/Hz。利用和差調變器,頻率解析度可強化到小於3千赫茲。在供應電壓為1.8伏特的情況下,震盪器電流消耗為1.298微安培,震盪器功率消耗為3.4微瓦特。


    This thesis presents the design of a novel resolution-enhanced digitally controlled oscillator (DCO) for 2.4-2.5 GHz wireless RF applications, such as 802.11b/g or cellular phones. Instead of analog tuning scheme, the DCO adopts a novel switched-capacitor network that provides sufficient tuning frequency range with fine frequency resolution. Wide and precise linear frequency tuning is achieved through digital control of three capacitor arrays. The smallest capacitance step size is approximately 30 aF that achieves the resolution of 10 KHz. The frequency resolution can be further enhanced through high-speed dithering using a third-order Σ-Δ modulator, which transfer function is programmable. The designed DCO is implemented in TSMC 0.18 μm CMOS process, and the chip area is 0.99 × 0.98 mm2. According to the measurement results, the frequency tuning range is 147 MHz. The smallest frequency step controlled by the switched-capacitor is 29 KHz. The measured phase noise is less than -110 dBc/Hz at 500 KHz offset frequency. By activating the Σ-Δ modulator, the frequency resolution is further improved, which is small than 3 KHz. The power consumption is 3.4 mW with a 1.8 supply.

    Chapter 1 Introduction 1.1 Background 1.2 Motivation 1.3 Thesis Organization Chapter 2 Architecture and Analysis of Resolution-Enhanced Digitally Controlled Oscillator 2.1 Introduction 2.2 Basics of LC-tank Oscillator 2.2.1 Oscillation Theory 2.2.2 Oscillator Characteristics 2.2.3 Phase Noise Analysis 2.3 Resolution-Enhanced Digitally Controlled Oscillator 2.3.1 DCO Architecture 2.3.2 Binary-Weighted Switched Capacitor Array 2.3.3 Programmable Σ-Δ Modulator 2.4 Resolution-Enhanced DCO Design Specifications 2.4.1 Output Frequency Range and Resolution 2.4.2 Phase Noise 2.5 Summary Chapter 3 Switched-Capacitor Digitally Controlled Oscillator 3.1 Design of Switched Capacitor Array 3.1.1 MOS Switches 3.1.2 Coarse-Tuning Scheme 3.1.3 Fine-Tuning Scheme 3.2 Design of Digitally Controlled Oscillator 3.2.1 DCO Core Circuit 3.2.2 LC Components 3.2.3 Bias Circuit and Output Buffer 3.3 Simulation Results 3.4 Summary Chapter 4 Programmable Σ-Δ Modulator 4.1 Σ-Δ Modulation 4.1.1 Fundamentals of Σ-Δ Modulation 4.1.2 Architectures of Σ-Δ Modulation 4.2 Proposed Third Order Programmable Σ-Δ Modulator 4.2.1 Modulator Architectures 4.2.2 Pole-Zero Position Analysis 4.2.3 Hardware Reduction 4.3 Simulation Results 4.4 Summary Chapter 5 System Simulation and Measurement Results 5.1 Resolution-Enhanced DCO Integration 5.1.1 Behavior Model Simulation 5.1.2 Mixed-Mode Circuit Simulation 5.1.3 3-Wire Interface 5.1.4 Layout Consideration 5.2 Chip Measurement Results 5.2.1 Measurement Consideration 5.2.2 Measurement Results 5.2.3 Measurement Discussion 5.3 Summary Chapter 6 Conclusion and Future Work 6.1 Conclusion 6.2 Future Work

    [1] R. B. Staszewski, C.-M. Hung, D. Leipold, and P. T. Balsara “A First Multigigahertz Digitally Controlled Oscillator for Wireless Application,” IEEE Trans. Microwave Theory Tech., vol.51, no. 11, pp. 2154-2164, Nov. 2003.

    [2] R. B. Staszewski, C.-M. Hung, N. Barton, M.-C. Lee, and D. Leipold, “A Digitally Controlled Oscillator in a 90 nm Digital CMOS process for Mobile Phones,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2203-2211, Nov. 2005.

    [3] R. B. Staszewski, D. Leipold, K. Muhammad, and P.T. Balsara, “Digital Controlled Oscillator (DCO)-based Architecture for RF Frequency Synthesis in a Deep-submicrometer CMOS Process,” IEEE Trans. Circuit Syst. II, analog Digit. Signal Process., vol.50, no. 11, pp. 815-828, Nov. 2003.

    [4] C.-M. Hung, R. B. Staszewski, N. Barton, M.-C. Lee, and D. Leipold, “A Digital Controlled Oscillator System for SAW-less Transmitters in a Cellular Handsets,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1160-1170, May 2006.

    [5] J. Craninckx and M. Steyaert, “Wireless CMOS Frequency Synthesizer Design,” Kluwer Academic Publishers, Boston, 1998.

    [6] B. Razavi, “Challenges in the Design of Frequency Synthesizers for Wireless Applications,” in Proc. of the IEEE 1997 Custom Integrated Circuits Conference, 1997 (CICC ’97), pp.395-402, May 1997.

    [7] A.Kral, F.Behbahani and A.A. Abidi, “RF-CMOS Oscillator with Switching Tuning,” Custom Integrated Circuit Conference, Proceedings of the IEEE 1998, 11-14, May 1998, pp. 555-558.

    [8] B. Miller and R. Conley, “A Multiple Modulator Fractional Divider,” in Proc. 44th Annu. Frequency Control Symp., May 1990, pp.559-568.

    [9] T. A. Riley, M. Copeland, and T. Kwasniewski, “Delta-Sigma Modulation in Fractional-N Frequency Synthesis,” IEEE Journal of Solid-State Circuits, vol. 28, pp. 553-559, May 1993.

    [10] N. Filiol, T. Riley, C.Plett, and M. Copeland, “An Agile ISM Band Frequency Synthesizer with Built-in GMSK Data Modulation,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 998-1008, July 1998.

    [11] M. Perrott, T. Tewksbury, and C. Sodini, “A 27-mW CMOS Fractional-N Synthesizer using Digital Compensation for 2.5-Mb/s GFSK Modulation,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 2048-2060, Dec. 1997.

    [12] J. C. Bor, “PLL Fundamentals,” Slides of Mixed-Mode IC for Wireless Communication, Mar. 2005.

    [13] B. Razavi, “RF Microelectronics,” Prentice Hall PTR, Upper Saddle River, NJ, 1998.

    [14] A. Fard, T. Johnson, and D. Aberg, “A Low Power Wide Band CMOS VCO for Multi-Standard Radios,” IEEE Radio and Wireless Conference, pp. 79 – 82, Sept. 2004.

    [15] A. Kral, F.Behbahani, and A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” Custom Integrated Circuits Conference. 1998.

    [16] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillator,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, May 1999.

    [17] K. O. Kenneth, N. Park, and D. J. Yang, “1/f Noise of NMOS and PMOS Transistors and their Implications to Design of Voltage Controlled Oscillators,” IEEE Radio Frequency Integrated Circuit Symp. Dig, pp. 59–62, June, 2002.

    [18] H. Sjoland, “Improved Switched Tuning of Differential CMOS VCOs,” IEEE Transactions on Circuits and Systems, Analog and Digital Signal Processing, vol. 49, no. 5, May 2002.

    [19] C. Vaucher and D. Kasperkovitz, “A Wide-Band Tuning System for Fully Integrated Satellite Receivers,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 987-997, July 1998.

    [20] W. Rhee, B.-S. Song, and A. Ali, “A 1.1GHz CMOS Fractional-N Frequency Synthesizer with a 3-b Third-Order ΣΔ Modulator, ” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, Oct. 2000.

    [21] B. Miller and R. J. Conley, “A Multiple Modulator Fractional Divider,” IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 3, June 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE