研究生: |
張東浩 Chang, Tung-Hao |
---|---|
論文名稱: |
金奈米粒子的合成、自組裝及其應用 The Synthesis, Self-assembly, and its Application of Gold Nanoparticles |
指導教授: |
朱鐵吉
Chu, Tieh-Chi |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 金奈米粒子 、矽奈米線 、氧化矽奈米線 、氧化矽奈米環 、自組裝 |
外文關鍵詞: | Gold nanoparticles, Silicon nanowires, Silica nanowires, Silica nanorings, Self-assembly |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要可分成兩個研究主題,分別是探討單晶矽奈米線的密度控制與選區成長、氧化矽奈米環與奈米線的成長與陰極放光特性。
在單晶矽奈米線部分,本研究利用尺寸均勻的金奈米粒子透過氣、液、固的成長機制,有效的催化成長出單晶的矽奈米線。單層的金奈米粒子可以有效的透過3-aminopropyltrimethoxysilane (APTMS)之鍵結並自組裝於矽基版上。實驗結果指出旋轉塗佈的維持時間扮演著重要的角色,可以有效控制在矽基材上所催化成長之矽奈米線的密度。進一步透過光學微影的方式製備出具備有金奈米粒子的選區圖案,並催化成長出選區單晶的矽奈米線。此研究將有助於未來在單晶矽奈米線的奈米元件及其他特性的研究。
在氧化矽奈米環與奈米線部分,也是利用尺寸均勻的金奈米粒子透過氣、液、固的成長機制,有效的成長出氧化矽奈米環與奈米線。旋轉塗佈的維持時間扮演著重要的角色,可以有效控制在矽基材上所成長之矽奈米環的密度。進一步透過光學微影的方式製備出具備有金奈米粒子的選區圖案,並催化成長出選區的氧化矽奈米線。透過陰極放光的分析可以有效測得氧化矽奈米線在藍光波段的放光。這種增強放光的特性將有助於其在光學元件上的應用。
The thesis are divided into two research subjects. They are the controlling growth density and patterning of single crystalline silicon nanowires and the growth of silica nanorings or nanowires for their cathodoluminescence property investigations.
In the single crystalline Si nanowires (NWs) part, this study examines the use of monodisperse Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si NWs through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results reveal that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. Also, this study employed optical lithography to pattern Au NPs and treating them as a catalyst for patterning growth of Si NWs. It is believed that this approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.
In the silica nanorings and nanowires part, this study also examines the use of monodisperse Au nanoparticles (NPs) as a catalyst for the growth of silica nanorings and nanowires. Also, the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later growth of silica nanorings. This study employed optical lithography to pattern Au NPs and treating them as a catalyst for patterning growth of silica NWs. The materials are found to have blue-light emitting from CL analysis. The enhancement in optical properties shall be advantageous in applications for further nanoscale light-emitting devices.
參考文獻
[1] G. Timp, Nanotechnology, Chapter 1, Springer-Verlag, New York (1998).
[2] 張育誠,"研究微波加熱技術在奈米材料之合成、自組裝及分解機構",國立清華大學碩士論文 (2003)。
[3] D. Minoli, Nanotechnology Applications to Telecommunications and Networking, Chapter 1-3, A John Wiley & Sons, Inc., New York (2006).
[4] M. Wilson, K. K. G. Smith, M. Simmons, B. Raguse, Nanotechnology Basic Science Emerging Technologies., Chapter 1, CRC, New York (2002).
[5] N. L. Rosi, C. A. Mirkin, Chem. Rev., 105, 1547 (2005).
[6] F. Xia, L. Jiang, Adv. Mater., 20, 2842 (2008).
[7] N. Toshima, T. Yonezawa, New J. Chem., 22, 1179 (1998).
[8] H. S. Nalwa, M. Sc, Handbook of Surfaces and Interfaces of Materials Vol. 3, Chapter 1, Acdemic Press, New York (2001).
[9] S. S. Chang, C. W. Shih, C. W. Chen, W. C. Lai, C. R. C. Wang, Langmuir., 15, 701 (1999).
[10] M. T. Reetz, W. Helbig, S. A. Quaiser, Chem.Mater., 7, 2227 (1995).
[11] S. Remita, M. Mostafavi, M. O. Delcourt, Radiat.Phys.Chem., 47, 275 (1996).
[12] A. Henglein, J. Phys. Chem ., 97, 5457 (1993).
[13] F. Kim, J. H. Song, P. Yang, J. Am. Chem. Soc., 124, 14316 (2002).
[14] M. Y. Han, C. H. Quek, Langmuir., 16, 362 (2000).
[15] L. Rivas, S. S. Cortes, J. V. G. Ramos, G. Morcillo, Langmuir., 17, 574 (2001).
[16] S. Link, Z. L. Wang, M. A. E-Sayed, J. Phys. Chem. B., 103, 3529 (1999).
[17] A. B. R. Mayer, J. E. Mark, Polymer., 41, 1627 (2000).
[18] N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem., 96, 9927 (1992).
[19] M. Wilson, K. K. G. Smith, M. Simmons, B. Raguse, Nanotechnology Basic Science Emerging Technologies., Chapter3, CRC, New York (2002).
[20] A. Henglein, J. Phys. Chem. B. , 104, 2432 (2000).
[21] K. Lee, W. S. Seo, J. T. Park, J. Am. Chem. Soc., 125, 3408 (2003).
[22] N. R. Jana, L. Gearheart, C. J. Murphy, Langmuir., 17, 6782 (2001).
[23] C. S. Ah, S. D. Hong, D. J. Jang, J. Phys. Chem. B., 105, 7871 (1999).
[24] N. Malikova, I. P. Santos, M. Schierhorn, N. A. Kotov, L. M. L. Marza´n, Langmuir., 18, 3694 (2002).
[25] F. Kim, J. H. Song, P. Yang, J. Am. Chem. Soc., 124 , 14316 (2002).
[26] S. S. Brenner, G. W. Sears, Acta Metallurgica, 4, 268 (1956).
[27] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
[28] Y. Wu, P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
[29] W. Lu, C. M. Lieber, J. Phys. D: Appl. Phys., 39, R387 (2006).
[30] B. Lewis, J. Crystal Growth, 21, 29 (1974).
[31] P. Yang, C. M. Lieber, Science, 273, 1836 (1996).
[32] X. Jiang, T. Herricks, Y. Xia, Nano Lett., 2, 1333 (2002).
[33] X. Wen, Y. Fang, Q. Pang, C. Yang, J. Wang, W. Ge, K. S. Wong, S. Yang, J. Phys. Chem. B, 109, 15303 (2005).
[34] X. Wen, S. Wang, Y. Ding, Z. L. Wang, S. Yang, J. Phys. Chem. B, 109, 215 (2005).
[35] R. Seelaboyina, J. Huang, J. Park, D. H. Kang, W. B. Choi, Nanotechnology, 17, 4840 (2006).
[36] W. E. Buhro, T. J. Trentler and K. M. Hickman, Science, 270, 1791 (1995).
[37] F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem., 45, 7511 (2006).
[38] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu, Adv. Funct. Mater., 16, 387 (2006).
[39] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, small, 1, 1062 (2005).
[40] T. Qiu, X. L. Wu, J. C. Shen, P. C. T. Ha, P. K. Chu, Nanotechnology, 17, 5769 (2006).
[41] B. K. Teo, X. H. Sun, Chem. Rev., 107, 1454 (2007).
[42] Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, C. M. Lieber, Nano Lett., 3, 149 (2003).
[43] Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Science, 293, 1289 (2001).
[44] J. Hahm, C. M. Lieber, Nano Lett., 4, 51 (2004).
[45] F. Patolsky, G. F. Zheng, O. Hayden, M. Lakadamyali, X. W. Zhuang, C. M. Lieber, Proc. Natl. Acad. Sci. U.S.A., 101, 14017 (2004).
[46] G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber, Nat. Biotechnol., 23, 1294 (2005).
[47] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 6, Prentice Hall; United States edition, New Jersey (2000).
[48] F. K. Liu, P. W. Huang, Y. C. Chang, F. H. Ko, T. C. Chu, Langmuir, 21, 2519 (2005).
[49] H. L. Chen, Y. H. Chu, C. I. Kuo, F. K. Liu, F. H. Ko, T. C. Chu, Electrochemical and Solid-State Letters, 8, G54 (2005).
[50] L. Pain, S. Tedesco, C. Constancias, C. R. Physique, 7, 910 (2006).
[51] S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, H. K. Yu, Small, 2, 458 (2006).
[52] G. Zhang, D. Wang, Chem. Asian J., 4, 236 (2009).
[53] C. R. K. Marriana, D. M. Tennant, J. Vac. Sci. Technol. A, 21, S207 (2003).
[54] H. Schift, J. Vac. Sci. Technol. B, 26, 458 (2008).
[55] Y. Chen , A. Pépin, Electrophoresis, 22, 187 (2007).
[56] Y. Wu, Y. Chi, L. Huynh, C. J. Barrelet, D. C. Bell, C. M. Lieber, Nano Lett., 4, 433 (2004).
[57] Y. Cui, L. J. Lauhon, M. S. Guidksen, J. Wang, C. M. Lieber, Appl. Phys, Lett., 78, 2214 (2001).
[58] A. M. Morales, C. M. Lieber, Science, 279, 208 (1998).
[59] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng, Appl. Phys. Lett., 72, 3458 (1998).
[60] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science, 287, 1471 (2000).
[61] A. San Paulo, N. Arellano, R. He, C. Carraro, R. Maboudian, R. Howe, J. Bokor, P. Yang, Nano. Lett., 7, 1100 (2007).
[62] J. Zheng, Z. Zhu, H. Chen, Z. Liu, Langumuir., 16, 4409 (2000).
[63] W. Li, L. Huo, D. Wang, G. Zeng, S. Xi, B. Zhao, J. Zhu, J. Wang, Y. Shen, Z. Lu, Colloids and SurfacesA : Physicochemical and Engineering Aspects., 175, 217 (2000).
[64] G. Timp, Nanotechnology, Chapter 8, Springer-Verlag, New York (1998).
[65] H. S. Nalwa, M. Sc, Handbook of surfaces and Interfaces of Materials Vol. 3, Chapter 3, Acdemic Press, New York (2001).
[66] G. Chumanov, K. Sokolov, B.W. Gregory, T. M. Cotton, J. Phys. Chem., 99, 9466 (1995).
[67] M. I. Baration, Synthesis, Functionalization and Surface Treatment of Nanoparticles, Chapter5-6, American Scientific Publishers, Calfornia (2003).
[68] Y. C. Chang, L. J. Chen, J. Phys. Chem. C, 111, 1268 (2007).
[69] Y. C. Chang, W. C. Yang, C. M. Chang, P. C. Hsu, L. J. Chen, Crystal Growth & Design, 9, 3161 (2009).
[70] Y. C. Chang, H. W. Wu, H. L. Chen, W. Y. Wang, L. J. Chen, J. Phys. Chem. C, 113, 14778 (2009).
[71] X. Fan, X. M. Meng, X. H. Zhang, Appl. Phys. Lett., 90, 103114 (2007).
[72] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett., 73, 3076 (1998).
[73] S. Luo, W. Zhou, W. Chu, J. Shen, Z. Zhang, L. Liu, D. Liu, Y. Xiang, W. Ma, S. Xie, Small, 3, 444 (2007).
[74] F. K. Liu, Y. C. Hsu, M. H. Tsai, T. C. Chu, Materials Letters, 61, 2402 (2007).
[75] T. H. Chang, F. K. Liu, Y.C. Chang, T. C. Chu, Chromatographia, 67, 723 (2008).
[76] E. Fourkal, I. Velchev, A. Taffo, C. Ma, V. Khazak, N. Skobeleva, IFMBE Proceedings, 25/VII, 761 (2009).
[77] I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, Cancer Letters, 239, 129 (2006).
[78] S. J. DeNardo, G. L. DeNardo, A. Natarajan, L. A. Miers, A. R. Foreman, C. Gruettner, G. N. Adamson, R. Ivkov, J.Nucl. Med., 48, 437 (2007).
[79] B. Baroli, M. G. Ennas, E. Loffredo, M. Isola, R. Pinna, M. A. Lopez-Quintela, Journal of Investigative Dermatology, 127, 1701 (2007).
[80] G. Oberdorster, E. Oberdorster, J. Oberdorster, Environmental Health Perspectives, 113, 823 (2005).