研究生: |
錢賢峻 Cian, Sian-Jyun |
---|---|
論文名稱: |
鑽石銀基複材與基板接合之熱界面材料開發 Development of Thermal Interface Materials in the Joining of Diamond/Silver Composites with Substrates |
指導教授: |
林樹均
Lin, Su-Jien |
口試委員: |
李勝隆
Lee, Sheng-Long 張守一 Chang, Shou-Yi 洪健龍 Horng, Jian-Long |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 鑽石銀基複材 、熱傳導係數 、熱阻 、熱界面材料 、低熔點合金 |
外文關鍵詞: | Diamond/silver composite, Thermal conductivity, Thermal resistance, Thermal interface materials, Low melting point alloys |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以銀作為基材,添加微量活性元素鈦提升鑽石與金屬基材的界面潤濕性,並以水平爐管進行無壓真空液相燒結製備鑽石銀基複合材料。實驗中在鈦添加量為 1.5 at% 時,所得複材熱傳導值可達 788 W/m*K,熱膨脹係數落於與基板或半導體元件匹配的範圍內。經由添加銀鈦薄片於生胚上,並於燒結過程中在其上方放置一不銹鋼片,可使鑽石銀基複材表面粗糙度下降至 1.1 μm,適合作為後續接合基板之用,且複材熱傳導值達 749 W/m*K。
與商業用氮化鋁、矽、氧化鋁基板做接合,使用四種低熔點合金作為熱界面材料,包括市售低熔點合金 (Liquid Ultra)–Ga0.78In0.14Sn0.08,以及自行配置 Ga0.76Sn0.24、In0.63Ga0.37 與 Sn0.37In0.36Ga0.27 三種合金。在 In0.63Ga0.37 合金接合系統有最高的熱傳值,其矽基板接合模組之熱傳值可達 398 W/m*K;在熱循環測試方面,Sn0.37In0.36Ga0.27 合金系統有最佳耐熱循環表現,散熱模組經 1000 次室溫至 85 °C 的熱循環後,三種基板都還能維持約 80% 以上的熱傳值。
Minor-addition of Ti was added into matrix to improve the wettability between diamonds and Ag matrix in this study. Pressureless liquid phase sintering process was adopted for the fabrication of diamond/Ag composites. The optimum result achieved by using 300 μm diamonds with a diamond volume fraction of 60 vol%, composites with a high thermal conductivity of 788 W/m*K and CTE of 6.7 ppm/K can be achieved. Diamond composites fabricated by silver-flake sintering method with a stainless steel plate can reduce the surface roughness to 1.1 μm which is suitable for joining with commercial substrates and thermal conductivity of 749 W/m*K can be achieved.
In this study, we used four different kinds of low melting point alloys (commercial Liquid Ultra Ga0.78In0.14Sn0.08, and homemade Ga0.76Sn0.24, In0.63Ga0.37, and Sn0.37In0.36Ga0.27) as thermal interface materials to join diamond composites with commercial substrates (aluminum nitride, silicon, sapphire). In the system of joining by In0.63Ga0.37, heat spreader joining with silicon can achieve highest thermal conductivity of 398 W/m*K. In thermal cycle tests carried out from 25 °C to 85 °C with 1000 cycles, the system of joining by Sn0.37In0.36Ga0.27 showed the best thermal performance, the groups of Sn0.37In0.36Ga0.27 can still maintain at least 80% of thermal conductivity.
[1] G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pp. 114-117, April 19, 1965), Proceedings of the IEEE, 86 (1998) 82-85.
[2] E. Pop, "Energy Dissipation and Transport in Nanoscale Devices", Nano Research, 3 (2010) 147-169.
[3] R. Mahajan, C.-P. Chiu, and G. Chrysler, "Cooling a microprocessor chip", Proceedings of the Ieee, 94 (2006) 1476-1486.
[4] S. C. Lin, K. Banerjee, and V. Wason, "Leakage and Variation aware Thermal Management of Nanometer Scale ICs", Proceedings of IMAPS Advaced Technology Workshop on Thermal Management, (2004)
[5] C. Zweben, "Advances in composite materials for thermal management in electronic packaging", JOM-Journal of the Minerals Metals & Materials Society, 50 (1998) 47-51.
[6] Z. Carl, "Thermal Materials Solve Power Electronics Challenges", Power Electronics Technology, 32 (2006) 40-47
[7] J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jiménez, C. Merveille, and J. Coleto, "Innovative packaging solution for power and thermal management of wide-bandgap semiconductor devices in space applications", Acta Astronautica, 62 (2008) 422-430.
[8] D. Rowcliffe, "Cemented Diamond Composites for Thermal Management Applications", Denver, Colorado, USA, (2002)
[9] 馮慶芬,粉末冶金學,新文京開發出版有限公司,台灣, (2002) 285-389。
[10] D. Coupard, J. Goni, and J. F. Sylvain, "Fabrication and squeeze casting infiltration of graphite/alumina preforms", Journal of Materials Science, 34 (1999) 5307-5313.
[11] I. N. Orbulov, Á. Németh, and J. Dobránszky, "Composite production by pressure infiltration," in Materials Science Forum, (2008) 137-142.
[12] G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi, "Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder", Science and Technology of Advanced Materials, 8 (2007) 644-654.
[14]http://www.fctsysteme.de/en/content/Spark_Plasma_Sintertechnologie/~nm.19~nc.40/SPS-Technology.html
[14] R. M. German, K. F. Hens, and J. L. Johnson, "Powder metallurgy processing of thermal management materials for microelectronic applications", International Journal of Powder Metallurgy, 30 (1994) 205-215.
[15] L. Weber and R. Tavangar, "On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites", Scripta Materialia, 57 (2007) 988-991.
[16] R. Tavangar, J. M. Molina, and L. Weber, "Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast", Scripta Materialia, 56 (2007) 357-360.
[17] L. Weber and R. Tavangar, "Diamond-based metal matrix composites for thermal management made by liquid metal infiltration—potential and limits," in Advanced Materials Research, 2009, pp. 111-115.
[18] A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, "High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix", Journal of materials science, 46 (2011) 1424-1438.
[19] K. Mizuuchi, K. Inoue, Y. Agari, M. Sugioka, M. Tanaka, T. Takeuchi, M. Kawahara, Y. Makino, M. Ito, "Processing of diamond-particle-dispersed silver-matrix composites in solid–liquid co-existent state by SPS and their thermal conductivity", Composites Part B: Engineering, 43 (2012) 1445-1452.
[20] 鍾宇翔,"高導熱鑽石銅銀基複材製程改善及其封裝接合",國立清華大學材料科學工程學系實驗進度報告),2016。
[21] K. Nogi, Y. Okada, K. Ogino, and N. Iwamoto, "Wettability of Diamond by Liquid Pure Metals", Journal of the Japan Institute of Metals(Japan), 57 (1993) 63-67.
[22] K. Chu, C. Jia, H. Guo, and W. Li, "On the thermal conductivity of Cu–Zr/diamond composites", Materials & Design, 45 (2013) 36-42.
[23] T. Schubert, B. Trindade, T. Weißgärber, and B. Kieback, "Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications", Materials Science and Engineering: A, 475 (2008) 39-44.
[24] S. Barzilai, N. Argaman, N. Froumin, D. Fuks, and N. Frage, "First-principles modeling of metal layer adsorption on CaF2 (111)", Surface Science, 602 (2008) 1517-1524.
[25] N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at high temperatures, Elsevier, (1999)
[26] S. Ren, X. Shen, C. Guo, N. Liu, J. Zang, X. He, X. Qu, "Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy", Composites Science and Technology, 71 (2011) 1550-1555.
[27] Q. Kang, X. He, S. Ren, L. Zhang, M. Wu, C. Guo, Q. Liu, T. Liu, X. Qu, "Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites", Journal of Alloys and Compounds, 576 (2013) 380-385.
[28] K. Yoshida and H. Morigami, "Thermal properties of diamond/copper composite material", Microelectronics reliability, 44 (2004) 303-308.
[29] E. Ekimov, N. Suetin, A. Popovich, and V. Ralchenko, "Thermal conductivity of diamond composites sintered under high pressures", Diamond and Related Materials, 17 (2008) 838-843.
[30] C. Xue and J. Yu, "Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface", Surface and Coatings Technology, 217 (2013) 46-50.
[31] P. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. Uggowitzer, "Selective interfacial bonding in Al (Si)–diamond composites and its effect on thermal conductivity", Composites science and technology, 66 (2006) 2677-2685.
[32] Z. Tan, Z. Li, G. Fan, Q. Guo, X. Kai, G. Ji, et al., "Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer", Materials & Design, 47 (2013) 160-166.
[33] I. Monje, E. Louis, and J. Molina, "Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control", Composites Part A: Applied Science and Manufacturing, 48 (2013) 9-14.
[34] H. Chen, C. Jia, and S. Li, "Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques", Journal of Materials Science, 47 (2012) 3367-3375.
[35] http://www.siliconfareast.com/TCT.htm,
[36] JEDEC Solid State Technology Assiociation, "JEDEC Standard, Temperature cycling, No. 22-A104D", (2009).
[37] United States defense standard, "Test Method Standard, Microcircuits, MIL-STD 883E", (1996).
[38] 楊邦朝、陳文媛、胡永達,"熱界面材料及其應用",微電子技術,1 (2006) 42-53。
[39] J. P. Gwinn and R. L. Webb, "Performance and testing of thermal interface materials", Microelectronics Journal, 34 (2003) 215-222.
[40] R. Prasher, C.-P. Chiu, and R. Mahajan, "Thermal interface materials: a brief review of design characteristics and materials", Electron Cool, 8 (2004) 12.
[41] D. Chung, "Thermal interface materials", Journal of Materials Engineering and Performance, 10 (2001) 56-59.
[42] T. Liu, P. Sen, and C.-J. Kim, "Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices", Journal of Microelectronical Systems, 21 (2012).
[43] C.-P. Chiu, J. G. Maveety, and Q. A. Tran, "Characterization of solder interfaces using laser flash metrology", Microelectronics Reliability, 42 (2002) 93-100.
[44] J. Hone, M. Llaguno, M. Biercuk, A. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, "Thermal properties of carbon nanotubes and nanotube-based materials", Applied Physics A, 74 (2002) 339-343.
[45] C. Liu, H. Huang, Y. Wu, and S. Fan, "Thermal conductivity improvement of silicone elastomer with carbon nanotube loading", Applied Physics Letters, 84 (2004) 4248-4250.
[46] A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, "Graphite nanoplatelet-epoxy composite thermal interface materials", The Journal of Physical Chemistry C, 111 (2007) 7565-7569.
[47] K. M. Shahil and A. A. Balandin, "Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials", Nano letters, 12 (2012) 861-867.
[48] C. K. Roy, S. Bhavnani, M. C. Hamilton, R. W. Johnson, J. L. Nguyen R. W. Knight, and D. K. Harris, "Investigation into the application of low melting temperature alloys as wet thermal interface materials", International Journal of Heat and Mass Transfer, 85 (2015) 996-1002.
[49] R. S. Prasher, J. Shipley, S. Prstic, P. Koning, and J. L. Wang, "Thermal resistance of particle laden polymeric thermal interface materials", Journal of Heat Transfer-Transactions of the Asme, 125 (2003) 1170-1177.
[50] R. Prasher, "Thermal interface materials: historical perspective, status, and future directions", Proceedings of the IEEE, 94 (2006) 1571-1586.
[51] R. S. Prasher, "Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials", Journal of Heat Transfer, 123 (2001) 969-975.
[52] http://www.factdiamond.com.
[53] http://www.agpro.com.tw.
[54] H. E. Boyer and T. L. Gall, "Metals handbook; desk edition", (1985)
[55] R. Prasher, C.-P. Chiu, and R. Mahajan, "Thermal interface materials: a brief review of design characteristics and materials", Electron Cool, 8 (2004)
[56] https://www.powerstream.com/vapor-pressure.htm
[57] R. S. Prasher, "Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials", Journal of Heat Transfer, 123 (2001) 969-975.
[58] J. Murray and K. Bhansali, "The Ag-Ti (Silver-Titanium) system", Journal of Phase Equilibria, 4 (1983) 178-183.
[59] S. Bhaumik, G. Upadhyaya, and M. Vaidya, "Alloy design of WC-10Co hard metals with modifications in carbide and binder phases", International Journal of Refractory Metals and Hard Materials, 11 (1992) 9-12.
[60] TA Instruments 2940 Thermomechanical Analyzer (TMA).
[61] NETZSCH Company Brochure, "Thermal Diffusivity-Thermal Conductivity: Method, Technique, Applications", NETZSCH Operating Instructions LFA 447TM Nanoflash.
[62] http://dragon.ccut.edu.tw/~mejwc1/p-mea/content/ch_18.pdf,
[63] W. Yim and R. Paff, "Thermal expansion of AlN, sapphire, and silicon", Journal of Applied Physics, 45 (1974) 1456-1457.
[64] Chandan K. Roy, Sushil Bhavnani, Michael C. Hamilton, "Investigation into the application of low melting temperature alloys as wet thermal interface materials", International Journal of Heat and Mass Transfer: 85 (2015) 996-1002
[65] http://www.coollaboratory.com/product/coollaboratory-liquid-ultra/
[66] 曾筱婷,"鑽石/銀-鈦基複合材料之熱性質與熱循環可靠性測試",國立清華大學材料科學工程學系碩士論文,2014。
[67] https://www.istc.illinois.edu/about/seminarpresentation/
20120405.pdf
[68] Milena Premovic, Yong Du, Dusko Minic, "Experimental investigation and thermodynamic calculations of the Ag–Ga– Sn phase diagram", CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry: 56 (2017) 215-223.
[69] https://sites.google.com/site/atdinsdale/ag-in