簡易檢索 / 詳目顯示

研究生: 德尚仁
Desalegn Alemu Mengistie
論文名稱: 提升PEDOT:PSS導電度於高分子太陽能電池和熱電之應用
CONDUCTIVITY ENHANCEMENT OF PEDOT:PSS AND APPLICATIONS FOR POLYMER SOLAR CELLS AND THERMOELECTRICS
指導教授: 朱治偉
Chu, Chih-Wei
王本誠
Wang, Pen-Cheng
口試委員: 林建村
Lin, Jiann-T'suen
陳錦地
Chen, Chin-Ti
陳方中
Chen, Fang-Chung
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 115
中文關鍵詞: PEDOT:PSS導電高分子有機高分子太陽能電池熱電性質提升導電度無ITO基材透明電極
外文關鍵詞: PEDOT:PSS, Conductive Polymer, Polymer Solar Cell, Thermoelectric, Conductivity Enhancement, ITO-free, Transparent Electrode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    With the dwindling fossil energy and increased environmental concern, solar cells are considered as viable renewable green energy sources. The conventional silicon solar cells are expensive primarily due to energy intensive and expensive manufacturing technology. Polymer solar cells (PSCs) are promising solar cell technologies to deliver cheap solar energy as they can be processed by high throughput and cheap roll-to-roll technology. However, currently PSCs use ITO (indium tin oxide) as the transparent electrode which is still expensive, brittle and with other technical drawbacks. Conductive polymer poly(3,4-ethylene dioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS) is quite promising for next-generation transparent electrode as it can be solution processed and is highly flexible. However, pristine PEDOT:PSS has very low conductivity so that it cannot be used as standalone electrode. This work aims at developing novel methods to significantly enhance the conductivity, investigate the mechanism of conductivity enhancement through various techniques and assess the PSC device performance. Three novel methods using cheap and nontoxic chemical are developed and conductivity is enhanced by four orders of magnitude and these films are used as standalone anodes for PSCs. Finally, it is demonstrated that the highly conductive PEDOT:PSS has high thermoelectric performance.
    The first method was treatment of PEDOT:PSS using different concentration and molecular weight polyethylene glycol (PEG) where it also helped to investigate the effect of molecular weight of additives on the conductivity of PEDOT:PSS. The conductivity enhancement depends on both the molecular weight and concentration of PEG used. Conductivity of PEDOT:PSS was enhanced from 0.3 S cm-1 to 805 S cm-1 with 2% PEG but to only 640 S cm-1 with 6% ethylene glycol (EG). PEG and EG with high dielectric constants screen the charge between PEDOT and PSS followed by phase separation and reorientation of PEDOT chains leading to bigger and better connected particles. ITO-free PSC devices fabricated using PEDOT:PSS treated with PEG anodes showed better performance than those treated with EG and comparable performance to that of ITO counterparts.
    The second method is simple yet robust PEDOT:PSS film treatment with methanol. Film treatment was done either by dropping small amount of methanol on the PEDOT:PSS, immersing the film in methanol or a combination of both. The conductivity of PEDOT:PSS films was enhanced to 1362 S cm-1 after film treatment. Other alcohols were also tried but showed inferior performance. Removal of insulator PSS from the film, morphology changes through phase segregation leading to larger domain and better connected conductor PEDOT and conformation change from coiled to linear/extended-coil structure are the main mechanisms for the high conductivity enhancement. Methanol treated films were smooth, uniform and also showed high transmittance desirable for standalone electrode for PSCs. ITO-free PSCs with standalone PEDOT:PSS anodes using P3HT:PCBM as the active layer showed power conversion efficiency of 3.71 % while the ITO counterpart showed 3.77 %.
    The third method was facile film treatment with formic acid. Film treatment was carried out by dropping small amount of formic acid on the annealed PEDOT:PSS film with an optional rinsing with DI water. Conductivity increased with increasing concentration of formic acid; the highest conductivity being 2050 S cm-1 using 26M concentration (>98 %). Treated films were of high quality with film uniformity and reproducibility. Up to 62% of PSS was removed. The mechanism of conductivity enhancement is similar to methanol treatment. ITO-free PSCs with standalone PEDOT:PSS anodes treated with formic acid using P3HT:PCBM as the active layer showed power conversion efficiency of 4.10% while the ITO counterpart showed 4.11%.
    In addition to transparent electrodes, highly conductive PEDOT:PSS has other important application areas. Highly conductive PEDOT:PSS treated by the above three methods were used for thermoelectrics: materials which change heat to electricity or vice versa for power generation or cooling/heating applications. Both thin film and free-standing flexible films were investigated. The Seebeck coefficient did not show big variation with the tremendous conductivity enhancement being 21.4 and 20.6 µV K-1 for EG and formic acid treated papers, respectively. A maximum power factor of 80.6 µW m-1K-2 was shown for formic acid treated samples. Coupled with intrinsically low thermal conductivity of PEDOT:PSS, a ZT~0.32 was calculated at room temperature using Harman method. The thermoelectric performance was greatly enhanced by enhancing the electrical conductivity of the papers.


    摘要
    有限的石化能源與環境的議題考量下,太陽能電池被視為是可行的綠色再生能源。目前被廣泛使用的矽太陽能電池,由於製造時消耗大量的能源與製造設備昂貴,所以其發電成本居高不下。高分子太陽能電池可以使用高產出輪軸方式生產,將能提共便宜的太陽能再生能源。然而,高分子太陽能電池使用的銦錫氧化物作為透明電極,它仍然是昂貴的、脆性的、與其他技術上的缺點。因導電聚合物聚PEDOT:PSS可以溶液製作,並且具有極佳的可撓性,所以被視為下一世代透明電極。然而,原始的PEDOT:PSS導電度非常低,使得它不能單獨作為電極。這項工作的目的是開發新穎方法,來大幅改善其導電特性,並且探討不同技術來增強導電性的機制和評估高分子太陽能電池的表現。此論文中之三種新方法使用便宜的和無毒的化學藥劑可使PEDOT:PSS薄膜導電度增加四個數量級,且這高導電之PEDOT:PSS可單獨用作高分子太陽能電池的陽極。最後,高導電PEDOT:PSS也被證明有高的熱電性能。
    第一種方法是使用不同的濃度和分子量的聚乙二醇來處理PEDOT:PSS,此項研究有助於觀察添加劑分子量對於PEDOT:PSS導電性的影響。導電性增強跟PEG分子量和添加濃度兩者有密切的關係。PEDOT:PSS的導電度從0.3 S/cm增加至805 S/cm,當填加2%的聚乙二醇,但當填加6%乙二醇時導電度僅能增640 S cm-1。 PEG和乙二醇具有高介電常數能將PEDOT和PSS之間的電荷吸引力隔絕,以致PEDOT鏈和PSS可重新定位形成像分離,導致較大較好的PEDOT顆粒。使用PEG添加後的PEDOT:PSS薄膜作為導電陽極的高分子太陽能電池表現出比乙二醇添加的PEDOT:PSS薄膜作為導電陽極的高分子太陽能有較好的轉換效率,且能有等同使用銦銻氧化物作為導電陽極的高分子太陽能有相同的轉換效率。
    第二種增加PEDOT:PSS薄膜導電度的方法法是簡單而穩定的甲醇處理。 此方法是將PEDOT:PSS薄膜浸泡在甲醇或滴上甲醇或兩者的組合處理。 PEDOT:PSS薄膜經此方式處理後的導電性提高至1362 S/cm。也試著使用其它醇類,但表現出的導電度都沒有比甲醇來的好。處理後將PSS從薄膜去除、通過相分離產生較大的PEDOT粒子與PEDOT之間較好的連接、從糾纏捲曲改變成成較分散捲曲的形貌是使PEDOT:PSS導電度增加的原因。經甲醇處理過之PEDOT:PSS薄膜有平整與均勻的表面,並且有非常高的穿透度是非常適合單獨用於有機太陽能的電極。經實驗證明單獨用PEDOT:PSS作為高分子太陽能電池陽極的元件效率為3.71%,與使用銦銻氧化物透明電極的太陽能電池效率3.77%不相上下。
    第三種方法是使用甲酸來處理PEDOT:PSS薄膜。處理方式是滴加少量的甲酸於PEDOT:PSS薄膜表面,並同時加熱薄膜,最後用去離子水清洗。電導度隨甲酸濃度的增加而增加,當甲酸濃度達26M (>98%),PEDOT:PSS薄膜導電度可達2050 S/cm¬。此方法製作出的導電薄膜品質優良且導電度的再現性與穩定度非常好。PEDOT:PSS薄膜中之PSS經處理後有62%被移除,所以其增加導電度機制類似於甲醇處理。只使用PEDOT:PSS作為有機太陽能電池的陽極元件效率可達4.10%與使用銦銻氧化物透明電極的太陽能電池效率4.11%幾乎沒有任何差別。
    除了將PEDOT:PSS薄膜作為透明電極,導電性高的PEDOT:PSS也具有其它重要的應用領域。經上述三種方法處理後PEDOT:PSS薄膜也可用在熱電應用上。將熱轉電或電轉熱,可用於發電或製冷/加熱應用的材料就可稱為熱電材料。我們對薄膜和厚膜進行了熱電的研究。 經乙二醇和甲酸處理後的PEDOT:PSS薄膜表的Seebeck係數分別為21.4和20.6μV/K,Seebeck係數並沒有隨著導電度大幅增加而有很大的變化。經甲酸處理過的樣品可表現出最佳的能量因子為80.6μWm-1K-2。伴隨著PEDOT:PSS的低導熱係數,用哈曼法在室溫下計算可得到ZT~0.32。當PEDOT:PSS導電度增強可大大提高了其熱導性。

    Table of Contents Abstract i Acknowledgements v Table of Contents vi List of Tables viii List of Figures ix List of Publications xiii Chapter 1: Introduction 1 1.1 Overview of Conductive Polymers 1 1.2 PEDOT:PSS 6 1.2.1 Introduction 6 1.2.2 Methods and Mechanisms of Conductivity Enhancement for PEDOT:PSS 10 1.2.3 Applications of PEDOT:PSS 12 1.3 Polymer Solar Cells 13 1.4 Thermoelectrics 17 1.5 Objectives and Scope 24 Chapter 2: Treatment of PEDOT:PSS with Polyethylene Glycol for ITO-free Polymer Solar Cells 26 2.1 Introduction 26 2.2 Experimental 28 2.2.1. Preparation and Characterization of PEDOT:PSS Films 28 2.2.2 Fabrication and Characterization of PSCs 29 2.3 Results and Discussion 30 2.3.1 Conductivity and Opto-electronics Properties of PEDOT:PSS films 30 2.3.2 Mechanism of Conductivity Enhancement 34 2.3.3 ITO-free PSCs Using PEDOT:PSS Treated with PEG/EG Anodes 43 2.4 Conclusions 46 Chapter 3: Highly Conductive PEDOT:PSS Electrode by Simple Film Treatment with Methanol for ITO-free Polymer Solar Cells 47 3.1 Introduction 47 3.2 Experimental 49 3.3 Results and Discussion 49 3.3.1 Conductivity and Opto-electronics Properties 49 3.3.2 Mechanism of Conductivity Enhancement 56 3.3.3 ITO-free PSCs using PEDOT:PSS Treated with Methanol Anodes 61 3.4 Conclusions 65 Chapter 4: Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells 66 4.1 Introduction 66 4.2 Experimental 68 4.3 Results and Discussion 68 4.3.1 Conductivity, Opto-electronics Properties and other Properties 68 4.3.2 ITO-Free PSCs Using PEDOT:PSS Treated with Formic Acid 81 4.4 conclusions 83 Chapter 5: Enhanced Thermoelectric Performance of PEDOT:PSS Flexible Bulky Papers by Treatment with Secondary Dopants 84 5.1 Introduction 84 5.2 Experimental 86 5.2.1 Preparation and Characterization of PEDOT:PSS Bulky Papers 86 5.2.2 Seebeck Coefficient Measurement 86 5.2.3 ZT Measurement 87 5.3 Results and Discussion 88 5.4 Conclusions 97 Chapter 6: Conclusions and Future Work 98 6.1 Conclusions 98 6.2 Future Work 100 Bibliography 101

    Bibliography
    [1] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett., 39 (1977) 1098-1101.
    [2] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH), J. Chem. Soc., Chem. Commun., 10.1039/C39770000578 (1977) 578-580.
    [3] C. Kittle, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, Inc., Hoboken, 2005.
    [4] A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, Taylor and Francis Group, Boca Raton, FL, 2011.
    [5] A.J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture), Angew. Chem. Int. Ed., 40 (2001) 2591-2611.
    [6] B.D. Fahlman, Materials Chemistry, 2nd ed., Springer, 2011.
    [7] H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, John Wiley & Sons Ltd, Chichester, 1997.
    [8] A.G. MacDiarmid, “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture), Angew. Chem. Int. Ed., 40 (2001) 2581-2590.
    [9] C.K. Chiang, S.C. Gau, C.R. Fincher, Y.W. Park, A.G. MacDiarmid, A.J. Heeger, Polyacetylene, (CH)x: n‐Type and p‐Type Doping and Compensation, Appl. Phys. Lett., 33 (1978) 18-20.
    [10] W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett., 42 (1979) 1698-1701.
    [11] M. Gerard, A. Chaubey, B.D. Malhotra, Application of Conducting Polymers to Biosensors, Biosens. Bioelectron., 17 (2002) 345-359.
    [12] H. Okuzaki, K. Funasaka, Electro-Responsive Polypyrrole Film Based on Reversible Sorption of Water Vapor, Synth. Met., 108 (2000) 127-131.
    [13] A. Wu, E.C. Venancio, A.G. MacDiarmid, Polyaniline and Polypyrrole Oxygen Reversible Electrodes, Synth. Met., 157 (2007) 303-310.
    [14] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting -Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics, Chem. Rev., 112 (2011) 2208-2267.
    [15] A.C. Grimsdale, K. Leok Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices, Chem. Rev., 109 (2009) 897-1091.
    [16] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications, Chem. Rev., 109 (2009) 5868-5923.
    [17] P.M. Beaujuge, J.R. Reynolds, Color Control in -Conjugated Organic Polymers for Use in Electrochromic Devices, Chem. Rev., 110 (2010) 268-320.
    [18] H. Naarmann, N. Theophilou, New Process for the Production of Metal-Like, Stable Polyacetylene, Synth. Met., 22 (1987) 1-8.
    [19] J.M. Pochan, D.F. Pochan, H. Rommelmann, H.W. Gibson, Kinetics of Doping and Degradation of Polyacetylene by Oxygen, Macromolecules, 14 (1981) 110-114.
    [20] R. Huq, G.C. Farrington, Stability of Undoped and Oxidized Polyacetylene, J. Electrochem. Soc., 131 (1984) 819-823.
    [21] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Adv. Mater., 12 (2000) 481-494.
    [22] Edot Monomer Clevios™ M V2, http://www.heraeus-clevios.com, accesed on Jan. 16, 2014.
    [23] G. Heywang, F. Jonas, Poly(alkylenedioxythiophene)s - New, Very Stable Conducting Polymers, Adv. Mater., 4 (1992) 116-118.
    [24] F. Jonas, L. Schrader, Conductive Modifications of Polymers with Polypyrroles and Polythiophenes, Synth. Met., 41 (1991) 831-836.
    [25] Q. Pei, G. Zuccarello, M. Ahlskog, O. Inganäs, Electrochromic and Highly Stable Poly(3,4-Ethylenedioxythiophene) Switches between Opaque Blue-Black and Transparent Sky Blue, Polymer, 35 (1994) 1347-1351.
    [26] L. Groenendaal, G. Zotti, F. Jonas, Optical, Conductive and Magnetic Properties of Electrochemically Prepared Alkylated Poly(3,4-ethylenedioxythiophene)s, Synth. Met., 118 (2001) 105-109.
    [27] Y.H. Ha, N. Nikolov, S.K. Pollack, J. Mastrangelo, B.D. Martin, R. Shashidhar, Towards a Transparent, Highly Conductive Poly(3,4-ethylenedioxythiophene), Adv. Funct. Mater., 14 (2004) 615-622.
    [28] M.V. Fabretto, D.R. Evans, M. Mueller, K. Zuber, P. Hojati-Talemi, R.D. Short, G.G. Wallace, P.J. Murphy, Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices, Chem. Mater., 24 (2012) 3998-4003.
    [29] S. Kirchmeyer, K. Reuter, Scientific Importance, Properties and Growing Applications of Poly(3,4-ethylenedioxythiophene), J. Mater. Chem., 15 (2005) 2077-2088.
    [30] Conductive Polymers, http://www.heraeus-clevios.com, accesed on Jan. 16, 2014.
    [31] Orgacon™ Electronic Materials, http://www.agfa.com, accesed on Jan. 16, 2014.
    [32] U. Lang, E. Müller, N. Naujoks, J. Dual, Microscopical Investigations of PEDOT:PSS Thin Films, Adv. Funct. Mater., 19 (2009) 1215-1220.
    [33] J. Ouyang, “Secondary Doping” Methods to Significantly Enhance the Conductivity of PEDOT:PSS for Its Application as Transparent Electrode of Optoelectronic Devices, Displays, 34 (2013) 423-436.
    [34] A.G. MacDiarmid, A.J. Epstein, The Concept of Secondary Doping as Applied to Polyaniline, Synth. Met., 65 (1994) 103-116.
    [35] Y. Cao, J. Qiu, P. Smith, Effect of Solvents and Co-solvents on the Processibility of Polyaniline: I. Solubility and Conductivity Studies, Synth. Met., 69 (1995) 187-190.
    [36] J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) by a Change of Solvents, Synth. Met., 126 (2002) 311-316.
    [37] R. Po, C. Carbonera, A. Bernardi, F. Tinti, N. Camaioni, Polymer- and Carbon-Based Electrodes for Polymer Solar Cells: Toward Low-Cost, Continuous Fabrication over Large Area, Sol. Energy Mater. Sol. Cells, 100 (2012) 97-114.
    [38] J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices, Adv. Funct. Mater., 15 (2005) 203-208.
    [39] S.-I. Na, S.-S. Kim, J. Jo, D.-Y. Kim, Efficient and Flexible ITO-free Organic Solar Cells Using Highly Conductive Polymer Anodes, Adv. Mater., 20 (2008) 4061-4067.
    [40] A.M. Nardes, M. Kemerink, M.M. de Kok, E. Vinken, K. Maturova, R.A.J. Janssen, Conductivity, Work Function, and Environmental Stability of PEDOT:PSS Thin Films Treated with Sorbitol, Org. Electron., 9 (2008) 727-734.
    [41] Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-treatment for Ito-Free Organic Solar Cells, Adv. Funct. Mater., 21 (2011) 1076-1081.
    [42] C. Badre, L. Marquant, A.M. Alsayed, L.A. Hough, Highly Conductive Poly(3,4-ethylenedioxythiophene):Poly (styrenesulfonate) Films Using 1-Ethyl-3-methylimidazolium Tetracyanoborate Ionic Liquid, Adv. Funct. Mater., 22 (2012) 2723-2727.
    [43] J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S. Park, S.-S. Kim, M.-H. Yoon, T.-W. Kim, S.-I. Na, Significant Vertical Phase Separation in Solvent-Vapor-Annealed Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Composite Films Leading to Better Conductivity and Work Function for High-Performance Indium Tin Oxide-Free Optoelectronics, ACS Appl. Mater. Interfaces, 4 (2012) 2551-2560.
    [44] Y. Xia, J. Ouyang, Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Macromolecules, 42 (2009) 4141-4147.
    [45] Y. Xia, J. Ouyang, Significant Conductivity Enhancement of Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Films through a Treatment with Organic Carboxylic Acids and Inorganic Acids, ACS Appl. Mater. Interfaces, 2 (2010) 474-483.
    [46] Y.J. Xia, H.M. Zhang, J.Y. Ouyang, Highly Conductive PEDOT:PSS Films Prepared through a Treatment with Zwitterions and Their Application in Polymer Photovoltaic Cells, J. Mater. Chem., 20 (2010) 9740-9747.
    [47] Y.J. Xia, J.Y. Ouyang, PEDOT:PSS Films with Significantly Enhanced Conductivities Induced by Preferential Solvation with Cosolvents and Their Application in Polymer Photovoltaic Cells, J. Mater. Chem., 21 (2011) 4927-4936.
    [48] Y. Xia, K. Sun, J. Ouyang, Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices, Adv. Mater., 24 (2012) 2436-2440.
    [49] N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng, Y.-R. Jo, B.-J. Kim, K. Lee, Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization, Adv. Mater., 10.1002/adma.201304611 (2013).
    [50] J. Ouyang, Solution-Processed PEDOT:PSS Films with Conductivities as Indium Tin Oxide through a Treatment with Mild and Weak Organic Acids, ACS Appl. Mater. Interfaces, 5 (2013) 13082-13088.
    [51] J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S.-S. Kim, S.-I. Na, Successive Solvent-Treated PEDOT:PSS Electrodes for Flexible ITO-Free Organic Photovoltaics, Sol. Energy Mater. Sol. Cells, 114 (2013) 104-109.
    [52] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, On the Mechanism of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film through Solvent Treatment, Polymer, 45 (2004) 8443-8450.
    [53] A. Aleshin, R. Kiebooms, R. Menon, A.J. Heeger, Electronic Transport in Doped Poly (3,4-ethylenedioxythiophene) near the Metal-Insulator Transition, Synth. Met., 90 (1997) 61-68.
    [54] Y. Xia, K. Sun, J. Ouyang, Highly Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Films Treated with an Amphiphilic Fluoro Compound as the Transparent Electrode of Polymer Solar Cells, Energy Environ. Sci., 5 (2012) 5325-5332.
    [55] T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, T. Sasaki, PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films, Macromolecules, 45 (2012) 3859-3865.
    [56] Q. Wei, M. Mukaida, Y. Naitoh, T. Ishida, Morphological Change and Mobility Enhancement in Pedot:Pss by Adding Co-solvents, Adv. Mater., 25 (2013) 2831-2836.
    [57] S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, D.-Y. Kim, Evolution of Nanomorphology and Anisotropic Conductivity in Solvent-Modified PEDOT:PSS Films for Polymeric Anodes of Polymer Solar Cells, J. Mater. Chem., 19 (2009) 9045-9053.
    [58] H.J. Snaith, H. Kenrick, M. Chiesa, R.H. Friend, Morphological and Electronic Consequences of Modifications to the Polymer Anode ‘PEDOT:PSS’, Polymer, 46 (2005) 2573-2578.
    [59] F. Jonas, J.T. Morrison, 3,4-Polyethylenedioxythiophene (PEDOT): Conductive Coatings Technical Applications and Properties, Synth. Met., 85 (1997) 1397-1398.
    [60] Y. Kudoh, K. Akami, Y. Matsuya, Solid Electrolytic Capacitor with Highly Stable Conducting Polymer as a Counter Electrode, Synth. Met., 102 (1999) 973-974.
    [61] S. Ghosh, O. Inganäs, Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors, Adv. Mater., 11 (1999) 1214-1218.
    [62] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, The Role of Buffer Layers in Polymer Solar Cells, Energy Environ. Sci., 4 (2011) 285-310.
    [63] R. Steim, F.R. Kogler, C.J. Brabec, Interface Materials for Organic Solar Cells, J. Mater. Chem., 20 (2010) 2499-2512.
    [64] T. Ameri, N. Li, C.J. Brabec, Highly Efficient Organic Tandem Solar Cells: A Follow up Review, Energy Environ. Sci., 6 (2013) 2390-2413.
    [65] H.-Y. Wei, Y.-S. Hsiao, J.-H. Huang, C.-Y. Hsu, F.-C. Chang, P. Chen, K.-C. Ho, C.-W. Chu, Dual-Color Electrochromic Films Incorporating a Periodic Polymer Nanostructure, RSC Adv., 2 (2012) 4746-4753.
    [66] J. Kawahara, P.A. Ersman, I. Engquist, M. Berggren, Improving the Color Switch Contrast in Pedot:Pss-Based Electrochromic Displays, Org. Electron., 13 (2012) 469-474.
    [67] P.-C. Wang, L.-H. Liu, D. Alemu Mengistie, K.-H. Li, B.-J. Wen, T.-S. Liu, C.-W. Chu, Transparent Electrodes Based on Conducting Polymers for Display Applications, Displays, 34 (2013) 301-314.
    [68] M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and Lightweight Organic Solar Cells with High Flexibility, Nat. Commun., 3 (2012) 770.
    [69] Y. Zhou, H. Cheun, S. Choi, J.W.J. Potscavage, C. Fuentes-Hernandez, B. Kippelen, Indium Tin Oxide-Free and Metal-Free Semitransparent Organic Solar Cells, Appl. Phys. Lett., 97 (2010) 153304-153303.
    [70] Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics, Science, 336 (2012) 327-332.
    [71] P. Yu, C.-Y. Tsai, J.-K. Chang, C.-C. Lai, P.-H. Chen, Y.-C. Lai, P.-T. Tsai, M.-C. Li, H.-T. Pan, Y.-Y. Huang, C.-I. Wu, Y.-L. Chueh, S.-W. Chen, C.-H. Du, S.-F. Horng, H.-F. Meng, 13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell Via Interface Engineering, ACS Nano, 7 (2013) 10780-10787.
    [72] Y. Zhang, F. Zu, S.-T. Lee, L. Liao, N. Zhao, B. Sun, Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells, Adv. Energy Mater., 4 (2014) 1300923.
    [73] R. Yue, J. Xu, Poly(3,4-ethylenedioxythiophene) as Promising Organic Thermoelectric Materials: A Mini-Review, Synth. Met., 162 (2012) 912-917.
    [74] B. Kippelen, J.-L. Bredas, Organic Photovoltaics, Energy Environ. Sci., 2 (2009) 251-261.
    [75] Y.-W. Su, S.-C. Lan, K.-H. Wei, Organic Photovoltaics, Mater. Today, 15 (2012) 554-562.
    [76] G.N. Patrick, A.C. Fernando, Organic Photovoltaics: Principles and Techniques for Nanometre Scale Characterization, Nanotechnology, 21 (2010) 492001.
    [77] C.W. Tang, Two‐Layer Organic Photovoltaic Cell, Appl. Phys. Lett., 48 (1986) 183-185.
    [78] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270 (1995) 1789-1791.
    [79] J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient Photodiodes from Interpenetrating Polymer Networks, Nature, 376 (1995) 498-500.
    [80] B.C. Thompson, J.M.J. Fréchet, Polymer–Fullerene Composite Solar Cells, Angew. Chem. Int. Ed., 47 (2008) 58-77.
    [81] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer–Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater., 22 (2010) 3839-3856.
    [82] H. Hoppe, N.S. Sariciftci, Organic Solar Cells: An Overview, J. Mater. Res., 19 (2004) 1924-1945.
    [83] C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic Solar Cells, Adv. Funct. Mater., 11 (2001) 15-26.
    [84] C.J. Brabec, Organic Photovoltaics: Technology and Market, Sol. Energy Mater. Sol. Cells, 83 (2004) 273-292.
    [85] Best Research Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, accesed on April 12, 2013.
    [86] F.C. Krebs, Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques, Sol. Energy Mater. Sol. Cells, 93 (2009) 394-412.
    [87] D.S. Hecht, L. Hu, G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Adv. Mater., 23 (2011) 1482-1513.
    [88] B. Azzopardi, C.J.M. Emmott, A. Urbina, F.C. Krebs, J. Mutale, J. Nelson, Economic Assessment of Solar Electricity Production from Organic-Based Photovoltaic Modules in a Domestic Environment, Energy Environ. Sci., 4 (2011) 3741-3753.
    [89] R. Gaudiana, C. Brabec, Organic Materials - Fantastic Plastic, Nat. Photonics, 2 (2008) 287-289.
    [90] L.E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, 321 (2008) 1457-1461.
    [91] H.S. Lee, Thermoelectrics, in: Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, John Wiley & Sons, Inc., New Jersey, 2011, pp. 100 - 179.
    [92] G.J. Snyder, E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 7 (2008) 105-114.
    [93] S.B. Riffat, X. Ma, Thermoelectrics: A Review of Present and Potential Applications, Appl. Therm. Eng., 23 (2003) 913-935.
    [94] K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures, Nature, 489 (2012) 414-418.
    [95] D.M. Rowe, Crc Handbook of Thermoelectrics, CRC, Boca Raton, 1995.
    [96] D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, Taylor & Francis, Boca Raton, 2006.
    [97] C.B. Vining, Semiconductors Are Cool, Nature, 413 (2001) 577-578.
    [98] T.M. Tritt, M.A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, MRS Bull., 31 (2006) 188-198.
    [99] A. Pereira Goncalves, E. Branco Lopes, O. Rouleau, C. Godart, Conducting Glasses as New Potential Thermoelectric Materials: The Cu-Ge-Te Case, J. Mater. Chem., 20 (2010) 1516-1521.
    [100] V. Zlati´c, A.C. Hewson, Prorties and Applications of Thermoelectric Materials, Springer, Hvar, 2008.
    [101] M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M.B. Ali Bashir, M. Mohamad, A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance, Renew. Sust. Energ. Rev., 30 (2014) 337-355.
    [102] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent Developments in Thermoelectric Materials, Int. Mater. Rev., 48 (2003) 45-66.
    [103] W. Liu, X. Yan, G. Chen, Z. Ren, Recent Advances in Thermoelectric Nanocomposites, Nano Energy, 1 (2012) 42-56.
    [104] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, 413 (2001) 597-602.
    [105] T.O. Poehler, H.E. Katz, Prospects for Polymer-Based Thermoelectrics: State of the Art and Theoretical Analysis, Energy Environ. Sci., 5 (2012) 8110-8115.
    [106] O. Bubnova, X. Crispin, Towards Polymer-Based Organic Thermoelectric Generators, Energy Environ. Sci., 5 (2012) 9345-9362.
    [107] M. He, F. Qiu, Z. Lin, Towards High-Performance Polymer-Based Thermoelectric Materials, Energy Environ. Sci., 6 (2013) 1352-1361.
    [108] G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency, Nat. Mater., 12 (2013) 719-723.
    [109] N. Dubey, M. Leclerc, Conducting Polymers: Efficient Thermoelectric Materials, J. Polym. Sci., Part B: Polym. Phys., 49 (2011) 467-475.
    [110] M.A. Kamarudin, S.R. Sahamir, R.S. Datta, B.D. Long, M.F. Mohd Sabri, S. Mohd Said, A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods, Scientific World J., 2013 (2013) 17.
    [111] R. Yue, S. Chen, B. Lu, C. Liu, J. Xu, Facile Electrosynthesis and Thermoelectric Performance of Electroactive Free-Standing Polythieno[3,2-b]thiophene Films, J. Solid State Electrochem., 15 (2011) 539-548.
    [112] N. Mateeva, H. Niculescu, J. Schlenoff, L.R. Testardi, Correlation of Seebeck Coefficient and Electric Conductivity in Polyaniline and Polypyrrole, J. Appl. Phys., 83 (1998) 3111-3117.
    [113] H. Kaneko, T. Ishiguro, A. Takahashi, J. Tsukamoto, Magnetoresistance and Thermoelectric Power Studies of Metal-Nonmetal Transition in Iodine-Doped Polyacetylene, Synth. Met., 57 (1993) 4900-4905.
    [114] W. Zhao, S. Fan, N. Xiao, D. Liu, Y.Y. Tay, C. Yu, D. Sim, H.H. Hng, Q. Zhang, F. Boey, J. Ma, X. Zhao, H. Zhang, Q. Yan, Flexible Carbon Nanotube Papers with Improved Thermoelectric Properties, Energy Environ. Sci., 5 (2012) 5364-5369.
    [115] Q. Zhang, Y. Sun, W. Xu, D. Zhu, Thermoelectric Energy from Flexible P3HT Films Doped with a Ferric Salt of Triflimide Anions, Energy Environ. Sci., 5 (2012) 9639-9644.
    [116] O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Optimization of the Thermoelectric Figure Of merit in the Conducting Polymer Poly(3,4-ethylenedioxythiophene), Nat. Mater., 10 (2011) 429-433.
    [117] T. Park, C. Park, B. Kim, H. Shin, E. Kim, Flexible PEDOT Electrodes with Large Thermoelectric Power Factors to Generate Electricity by the Touch of Fingertips, Energy Environ. Sci., 6 (2013) 788-792.
    [118] Y.Y. Wang, J. Zhou, R.G. Yang, Thermoelectric Properties of Molecular Nanowires, J. Phys. Chem. C, 115 (2011) 24418-24428.
    [119] M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Thermopower Enhancement in Conducting Polymer Nanocomposites Via Carrier Energy Scattering at the Organic-Inorganic Semiconductor Interface, Energy Environ. Sci., 5 (2012) 8351-8358.
    [120] N. Wang, L. Han, H. He, N.-H. Park, K. Koumoto, A Novel High-Performance Photovoltaic-Thermoelectric Hybrid Device, Energy Environ. Sci., 4 (2011) 3676-3679.
    [121] T. Chen, G.H. Guai, C. Gong, W. Hu, J. Zhu, H. Yang, Q. Yan, C.M. Li, Thermoelectric Bi2Te3-Improved Charge Collection for High-Performance Dye-Sensitized Solar Cells, Energy Environ. Sci., 5 (2012) 6294-6298.
    [122] X.-Z. Guo, Y.-D. Zhang, D. Qin, Y.-H. Luo, D.-M. Li, Y.-T. Pang, Q.-B. Meng, Hybrid Tandem Solar Cell for Concurrently Converting Light and Heat Energy with Utilization of Full Solar Spectrum, J. Power Sources, 195 (2010) 7684-7690.
    [123] M. Sumino, K. Harada, M. Ikeda, S. Tanaka, K. Miyazaki, C. Adachi, Thermoelectric Properties of n-Type C60 Thin Films and Their Application in Organic Thermovoltaic Devices, Appl. Phys. Lett., 99 (2011) 093308.
    [124] K. Harada, M. Sumino, C. Adachi, S. Tanaka, K. Miyazaki, Improved Thermoelectric Performance of Organic Thin-Film Elements Utilizing a Bilayer Structure of Pentacene and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F[Sub 4]-TCNQ), Appl. Phys. Lett., 96 (2010) 253304.
    [125] N. Espinosa, M. Hosel, D. Angmo, F.C. Krebs, Solar Cells with One-Day Energy Payback for the Factories of the Future, Energy Environ. Sci., 5 (2012) 5117-5132.
    [126] R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-Roll Fabrication of Polymer Solar Cells, Mater. Today, 15 (2012) 36-49.
    [127] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer, Nat. Photonics, 6 (2012) 180-185.
    [128] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency, Nat. Commun., 4 (2013) 1446.
    [129] C.S. Tao, J. Jiang, M. Tao, Natural Resource Limitations to Terawatt-Scale Solar Cells, Sol. Energy Mater. Sol. Cells, 95 (2011) 3176-3180.
    [130] A. Chipman, A Commodity No More, Nature, 449 (2007) 131-131.
    [131] J. Cui, A. Wang, N.L. Edleman, J. Ni, P. Lee, N.R. Armstrong, T.J. Marks, Indium Tin Oxide Alternatives - High Work Function Transparent Conducting Oxides as Anodes for Organic Light-Emitting Diodes, Adv. Mater., 13 (2001) 1476-1480.
    [132] C.J.M. Emmott, A. Urbina, J. Nelson, Environmental and Economic Assessment of ITO-Free Electrodes for Organic Solar Cells, Sol. Energy Mater. Sol. Cells, 97 (2012) 14-21.
    [133] R. Zhu, C.-H. Chung, K.C. Cha, W. Yang, Y.B. Zheng, H. Zhou, T.-B. Song, C.-C. Chen, P.S. Weiss, G. Li, Y. Yang, Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors, ACS Nano, 5 (2011) 9877-9882.
    [134] J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-Processed Metal Nanowire Mesh Transparent Electrodes, Nano Lett., 8 (2008) 689-692.
    [135] M.-G. Kang, M.-S. Kim, J. Kim, L.J. Guo, Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes, Adv. Mater., 20 (2008) 4408-4413.
    [136] K.-H. Tu, S.-S. Li, W.-C. Li, D.-Y. Wang, J.-R. Yang, C.-W. Chen, Solution Processable Nanocarbon Platform for Polymer Solar Cells, Energy Environ. Sci., 4 (2011) 3521-3526.
    [137] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, Conductive Carbon Nanotube Films, Science, 305 (2004) 1273-1276.
    [138] G. Gruner, Carbon Nanotube Films for Transparent and Plastic Electronics, J. Mater. Chem., 16 (2006) 3533-3539.
    [139] L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C. Zhou, Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics, ACS Nano, 4 (2010) 2865-2873.
    [140] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes, Nat. Nanotechnol., 5 (2010) 574-578.
    [141] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature, 457 (2009) 706-710.
    [142] G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Flexible Light-Emitting Diodes Made from Soluble Conducting Polymers, Nature, 357 (1992) 477-479.
    [143] F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer Photovoltaic Cells with Conducting Polymer Anodes, Adv. Mater., 14 (2002) 662-665.
    [144] H. Yan, T. Jo, H. Okuzaki, Potential Application of Highly Conductive and Transparent Poly(3,4-ethylenedioxythiophene)/ Poly(4-etyrenesulfonate) Thin Films to Touch Screen as a Replacement for Indium Tin Oxide Electrode, Polym. J., 43 (2011) 662-665.
    [145] H.-Y. Wei, J.-H. Huang, C.-Y. Hsu, F.-C. Chang, K.-C. Ho, C.-W. Chu, Organic Solar Cells Featuring Nanobowl Structures, Energy Environ. Sci., 6 (2013) 1192-1198.
    [146] J.-H. Huang, D. Kekuda, C.-W. Chu, K.-C. Ho, Electrochemical Characterization of the Solvent-Enhanced Conductivity of Poly(3,4-ethylenedioxythiophene) and Its Application in Polymer Solar Cells, J. Mater. Chem., 19 (2009) 3704-3712.
    [147] J. Huang, P.F. Miller, J.S. Wilson, A.J. de Mello, J.C. de Mello, D.D.C. Bradley, Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films, Adv. Funct. Mater., 15 (2005) 290-296.
    [148] M. Reyes-Reyes, I. Cruz-Cruz, R.n. López-Sandoval, Enhancement of the Electrical Conductivity in PEDOT:PSS Films by the Addition of Dimethyl Sulfate, J. Phys. Chem. C, 114 (2010) 20220-20224.
    [149] C.-J. Ko, Y.-K. Lin, F.-C. Chen, C.-W. Chu, Modified Buffer Layers for Polymer Photovoltaic Devices, Appl. Phys. Lett., 90 (2007) 063509-063503.
    [150] Y.J. Xia, J.Y. Ouyang, Anion Effect on Salt-Induced Conductivity Enhancement of Poly(3,4-ethylenedioxythiophene):Poly(etyrenesulfonate) Films, Org. Electron., 11 (2010) 1129-1135.
    [151] D. Alemu, H.Y. Wei, K.C. Ho, C.W. Chu, Highly Conductive PEDOT:PSS Electrode by Simple Film Treatment with Methanol for Ito-Free Polymer Solar Cells, Energy Environ. Sci., 5 (2012) 9662-9671.
    [152] T. Wang, Y. Qi, J. Xu, X. Hu, P. Chen, Effects of Poly(ethylene glycol) on Electrical Conductivity of Poly(3,4-ethylenedioxythiophene)–Poly(styrenesulfonic scid) Film, Appl. Surf. Sci., 250 (2005) 188-194.
    [153] J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, Polymer Optoelectronic Devices with High‐Conductivity Poly(3,4‐ethylenedioxythiophene) Anodes, J. Macromol. Sci., Pure Appl. Chem., 41 (2004) 1497-1511.
    [154] X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, M. Berggren, The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT-PSS) Plastic Electrodes, Chem. Mater., 18 (2006) 4354-4360.
    [155] T.P. Nguyen, S.A. de Vos, An Investigation into the Effect of Chemical and Thermal Treatments on the Structural Changes of Poly(3,4-ethylenedioxythiophene)/Polystyrenesulfonate and Consequences on Its Use on Indium Tin Oxide Substrates, Appl. Surf. Sci., 221 (2004) 330-339.
    [156] Y. Xia, J. Ouyang, Significant Different Conductivities of the Two Grades of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and Clevios PH1000, Arising from Different Molecular Weights, ACS Appl. Mater. Interfaces, 4 (2012) 4131-4140.
    [157] M.W. Rowell, M.A. Topinka, M.D. McGehee, H.-J. Prall, G. Dennler, N.S. Sariciftci, L. Hu, G. Gruner, Organic Solar Cells with Carbon Nanotube Network Electrodes, Appl. Phys. Lett., 88 (2006) 233506-233503.
    [158] R.F. Service, Outlook Brightens for Plastic Solar Cells, Science, 332 (2011) 293-293.
    [159] G. Li, R. Zhu, Y. Yang, Polymer Solar Cells, Nat. Photonics, 6 (2012) 153-161.
    [160] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, Transparent, Multifunctional, Carbon Nanotube Sheets, Science, 309 (2005) 1215-1219.
    [161] S.B. Yang, B.-S. Kong, D.-H. Jung, Y.-K. Baek, C.-S. Han, S.-K. Oh, H.-T. Jung, Recent Advances in Hybrids of Carbon Nanotube Network Films and Nanomaterials for Their Potential Applications as Transparent Conducting Films, Nanoscale, 3 (2011) 1361-1373.
    [162] Y.-S. Hsiao, W.-T. Whang, C.-P. Chen, Y.-C. Chen, High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film for Use in ITO-Free Polymer Solar Cells, J. Mater. Chem., 18 (2008) 5948-5955.
    [163] P.A. Levermore, L. Chen, X. Wang, R. Das, D.D.C. Bradley, Fabrication of Highly Conductive Poly(3,4-ethylenedioxythiophene) Films by Vapor Phase Polymerization and Their Application in Efficient Organic Light-Emitting Diodes, Adv. Mater., 19 (2007) 2379-2385.
    [164] Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, O. Inganas, Investigation on Polymer Anode Design for Flexible Polymer Solar Cells, Appl. Phys. Lett., 92 (2008) 233308-233303.
    [165] K. Sun, Y. Xia, J. Ouyang, Improvement in the Photovoltaic Efficiency of Polymer Solar Cells by Treating the Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Buffer Layer with Co-solvents of Hydrophilic Organic Solvents and Hydrophobic 1,2-Dichlorobenzene, Sol. Energy Mater. Sol. Cells, 97 (2012) 89-96.
    [166] I.M. Smallwood, Handbook of Organic Solvent Properties, Halsted Press, New York, 1996.
    [167] V. Scardaci, R. Coull, J.N. Coleman, Very Thin Transparent, Conductive Carbon Nanotube Films on Flexible Substrates, Appl. Phys. Lett., 97 (2010) 023114-023113.
    [168] L. Li, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Hollow Nanoshell of Layered Double Hydroxide, Chem. Commun., http://dx.doi.org/10.1039/B605889B (2006) 3125-3127.
    [169] C. Gong, H.B. Yang, Q.L. Song, Z.S. Lu, C.M. Li, Mechanism for Dimethylformamide-Treatment of Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Layer to Enhance Short Circuit Current of Polymer Solar Cells, Sol. Energy Mater. Sol. Cells, 100 (2012) 115-119.
    [170] M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, Stability of the Interface between Indium-Tin-Oxide and Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) in Polymer Light-Emitting Diodes, Appl. Phys. Lett., 77 (2000) 2255-2257.
    [171] T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B.H. Hong, J.-H. Ahn, T.-W. Lee, Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode, Nat. Photonics, 6 (2012) 105-110.
    [172] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes, Nat. Nanotechnol., 5 (2010) 574-578.
    [173] D.A. Mengistie, P.-C. Wang, C.-W. Chu, Effect of Molecular Weight of Additives on the Conductivity of PEDOT:PSS and Efficiency for ITO-Free Organic Solar Cells, J. Mater. Chem. A, 1 (2013) 9907-9915.
    [174] J.E. Yoo, K.S. Lee, A. Garcia, J. Tarver, E.D. Gomez, K. Baldwin, Y. Sun, H. Meng, T.Q. Nguyen, Y.L. Loo, Directly Patternable, Highly Conducting Polymers for Broad Applications in Organic Electronics, Proc. Natl. Acad. Sci. USA, 107 (2010) 5712-5717.
    [175] R.J. Gillespie, R.H. Cole, The Dielectric Constant of Sulphuric Acid, Trans. Faraday Society, 52 (1956) 1325-1331.
    [176] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, 4th ed., Wiley-Interscience, New York, 1986.
    [177] O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren, X. Crispin, Semi-Metallic Polymers, Nat. Mater., 13 (2014) 190-194.
    [178] D.A. Mengistie, M.A. Ibrahem, P.C. Wang, C.W. Chu, Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells, ACS Appl. Mater. Interfaces, 6 (2014) 2292-2299.
    [179] J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D.R.T. Zahn, T. Gessner, Enhancement of the Thermoelectric Properties of Pedot:Pss Thin Films by Post-Treatment, J. Mater. Chem. A, 1 (2013) 7576-7583.
    [180] S.K. Yee, N.E. Coates, A. Majumdar, J.J. Urban, R.A. Segalman, Thermoelectric Power Factor Optimization in PEDOT:PSS Tellurium Nanowire Hybrid Composites, Phys. Chem. Chem. Phys., 15 (2013) 4024-4032.
    [181] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects, Energy Environ. Sci., 2 (2009) 466.
    [182] F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, L.F. Li, Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate), Chin. Phys. Lett., 25 (2008) 2202-2205.
    [183] T.C. Harman, J.H. Cahn, M.J. Logan, Measurement of Thermal Conductivity by Utilization of the Peltier Effect, J. Appl. Phys., 30 (1959) 1351-1359.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE