研究生: |
林嘉慧 Lin, Chia-Hui |
---|---|
論文名稱: |
綠豆新型的Y2K類型脫水蛋白VrDhn1之特性分析 Characterization of a Novel Y2K-type Dehydrin VrDhn1 from Mungbean (Vigna radiate L.) |
指導教授: | 林彩雲 |
口試委員: |
曾夢蛟
楊長賢 揚明德 靳宗洛 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 綠豆 、脫水蛋白 、DNA結合蛋白 |
外文關鍵詞: | Dehydrin, Late embryogenesis, Protein-DNA interaction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由綠豆(Vigna radiate (L.) Wilczek)胚基因庫分離出一個新型脫水蛋白質(dehydrin),並命名為VrDhn1。VrDhn1是一個intronless基因且屬於Y2K類型脫水蛋白。利用western blot,顯示VrDhn1大量累積在成熟種子的胚和子葉並且在種子發芽約2天後消失。由反轉錄聚合酶連鎖反應(RT-PCR)及即時聚合酶連鎖反應(real-time PCR),顯示VrDhn1轉錄子大量表現於經由脫水、高鹽、ABA處理之10天大的綠豆幼苗,卻無法偵測VrDhn1蛋白質的累積。VrDhn1:GFP 融合蛋白(fusion protein)在阿拉伯芥轉殖株生長在一般環境是呈現被降解(degraded)情形,但轉殖株處在脫水的情況下,融合蛋白的表現量比一般生長情況有較穩定存在轉植株內。利用免疫定位(immunolocalization)顯示VrDhn1累積在成熟種子及種子發芽一天後的胚之細胞核及細胞質,且大部分的VrDhn1聚集在核染色質(chromatin)的周圍。Electrophoretic mobility shift assay (EMSA)的分析顯示VrDhn1與DNA片段有不專一性結合,鋅離子及鎳離子會提升VrDhn1與DNA間交互作用(internation)。利用CO-immunoprecipitation實驗顯示綠豆種子內VrDhn1的tyrosine 和 serine胺基酸可被磷酸化(phosphorylation)。VrDhn1 (30.17 kDa)經由膠體過濾法(gel filtration)分析,其分子量為63.1 kDa,推測VrDhn1以二聚物(dimmer)的形式存在。這是第一篇紀錄Y2K類型脫水蛋白質 VrDhn1在種子成熟期間,會進入細胞核並與DNA互相連結的研究。
A novel dehydrin gene (VrDhn1) was isolated from an embryo cDNA library of Vigna radiata (L.) Wilczek (mungbean) variety VC1973A. The intronless VrDhn1 gene encodes a protein belonging to the Y2K-type dehydrin family. VrDhn1 protein accumulated in embryos and cotyledons during seed maturation and disappeared 2 days after seed imbibition (DAI). The expression of VrDhn1 mRNA and accumulation of VrDhn1 protein were at high levels in mature seeds, but neither mRNA nor protein was detected in mungbean vegetative tissues under normal growth conditions. VrDhn1 mRNA level was extremely high in mature seeds and decreased to ~30% at 1 DAI, and was not detectable at ~7 DAI. Tissue dehydration, salinity and exogenous abscisic acid (ABA) markedly induced VrDhn1 transcripts in plants as measured by quantitative real-time reverse transcription-PCR (qRT-PCR). VrDhn1 protein was not detected using immunoblots in seedlings under stress treatments. VrDhn1:GFP fusion protein is degraded in transgenic Arabidopsis under normal condition, but is more stable under dehydration. In mature seeds or 1 DAI seedlings, VrDhn1 proteins were immunolocalized in the nucleus and cytoplasm. VrDhn1 exhibited low affinity of non-specific interaction with DNA using electrophoretic mobility shift assays (EMSA), and the exogenous addition of Zn2+ or Ni2+ stimulated interaction. Phosphorylation occurs on threonine and tyrosine residues of VrDhn1 in mungbean seeds. The His-tagged VrDhn1 (30.17 kDa) protein showed a molecular mass of 63.1 kDa on gel filtration, suggesting a dimer form. This is the first report showing that a Y2K-type VrDhn1 enters the nucleus and interacts with DNA during seed maturation.
Ali, M., Malik, I.A., Silverstein, K.A. and Ahmad, B. (1997) The mungbean green revolution in Pakistan. AVRDC publication no.97-459 Technical Bulletin 24: 1-66.
Alsheikh, M.K., Heyen, B.J. and Randall, S.K. (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278: 40882-40889.
Bae, E.K., Lee, H., Lee, J.S. and Noh, E.W. (2009) Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep. 42: 439-443.
Bartels, D., Furini, A., Ingram, J. and Salamini, F. (1996) Responses of plants to dehydration stress: a molecular analysis. Plant Growth Regul. 20: 111-118.
Bartels, D. and Sunkar, R. (2005) Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24:1-36.
Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F. and Covarrubias, A.A. (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148: 6-24.
Bhattarai, T. and Fettig, S. (2005) Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiol. Plant. 123: 452-458.
Bies-Ethève, N., Gaubier-Comella, P., Debures, A., Lasserre, E., Jobet, E., Raynal, M., et al. (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 67: 107-124.
Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Vladimirova, S.V. and Voinikov, V.K. (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 2: 1-7.
Bradford, K.J. and Chandler, P.M. (1992) Expression of “dehydrin-like’’ proteins in embryos and seedlings of Zizinia palustris and Oryza sativa during dehydration. Plant Physiol. 99: 488-494.
Bray, E.A. (1993) Molecular responses to water deficit. Plant Physiol. 103: 1035-1040.
Brini, F., Saibi, W., Amara, I., Gargouri, A., Masmoudi, K. and Hanin, M. (2010) Wheat dehydrin DHN-5 exerts a heat-protective effect on -glucosidase and glucose oxidase activities. Biosci. Biotechnol. Biochem. 74: 1050-1054.
Busk, P.K., Jensen, A.B. and Pagès, M. (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab 17 from maize. Plant J. 11: 1285-1295.
Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., et al. (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333.
Carjuzaa, P., Castellión, M., Distéfano, A.J., del Vas, M. and Maldonado, S. (2008) Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma 233: 149-156.
Ceccardi, T.L., Meyer, N.C. and Close, T.J. (1994) Purification of a maize dehydrin. Protein Express. Purif. 5: 266-269.
Chang, S., Puryear, J. and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.
Chen, Y.J., Wu, M.F., Yu, Y.H., Tam, M.F. and Lin, T.Y. (2004) Developmental expression of three mungbean Hsc70s and substrate-binding specificity of the encoded proteins. Plant Cell Physiol. 45: 1603-1614.
Close, T.J. (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97: 795-803.
Close, T.J. (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 100: 291-296.
Close, T.J., Fenton, R.D. and Moonan, F. (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol. Biol. 23: 279-286.
Cuming, A.C., Cho, S.H., Kamisugi, Y., Graham, H. and Quatrano, R.S. (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol. 176: 275-287.
Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., et al. (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623-638.
Dure, L., Crouch, M., Harada, J., Ho, T.H.D., Mundy, J., Quatrano, R.S., et al. (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12: 475-486.
Exner, V. and Hennig, L. (2008) Chromatin rearrangements in development. Curr. Opin. Plant Biol. 11: 64-69.
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, MM. et al. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470-88.
Galau, G.A. and Close, T.J. (1992) Sequences of the cotton group 2 LEA/RAB/dehydrin proteins encoded by Lea3 cDNAs. Plant Physiol. 98: 1523-1525.
Goday, A., Jensen, A.B., Culianez-Macia, F.A., Alba, M.M., Figueras, M., Serratosa, J., et al. (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6: 351-360.
Hara, M., Fujinaga, M. and Kuboi, T. (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biochem. 42: 657-662.
Hara, M., Fujinaga, M. and Kuboi, T. (2005) Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56: 2695-2703.
Hara, M., Shinoda, Y., Kubo, M., Kashima, D., Takahashi, I., Kato, T., et al. (2011) Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent. Acta Physiol. Plant. 33:2103-2116.
Hara, M., Shinoda, Y., Tanaka, Y. and Kuboi, T. (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ. 32: 532-541.
Hara, M., Terashima, S. and Kuboi, T. (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant Physiol. 158: 1333-1339.
Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499.
Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130: 675-687.
Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8: 583-593.
Hu, L., Wang, Z., Du, H. and Huang, B. (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J. Plant Physiol. 167: 103-109.
Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403.
Ismail, A.M., Hall, A.E. and Close, T.J. (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 120: 237-244.
Iuchi, S., Yamaguchi-Shinozaki, K., Urao, T., Terao, T. and Shinozaki, K. (1996) Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol. 37: 1073-1082.
Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C. and Pages, M. (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J. 13: 691-697.
Karpechenko, G.D. (1925) Chromosomes of Phaseolinae. Bull. Appl. Bot. Leningrad. 14: 143-148.
Koag, M.C., Fenton, R.D., Wilkens, S. and Close, T.J. (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131: 309-316.
Koag, M.C., Wilkens, S., Fenton, R.D., Resnik, J., Vo, E. and Close, T.J. (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 150: 1503-1514.
Lång, V. and Palva, E.T. (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20: 951-962.
Leprince, O., Colson, P., Houssier, C. and Deltour, R. (1995) Changes in chromatin structure associated with germination of maize and their relation with desiccation tolerance. Plant Cell Environ. 18: 619-629.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25: 402-408.
Marian, C.O., Krebs, S.L. and Arora, R. (2004) Dehydrin variability among rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol. 161: 773-780.
Mehta, P.A., Rebala, K.C., Venkataraman, G. and Parida, A. (2009) A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase II in vitro. Plant Physiol. Biochem. 47: 701-709.
Momma, M., Haraguchi, K., Saito, M., Chikuni, K. and Harada, K. (1997) Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci. Biotechnol. Biochem. 61: 1286-1291.
Momma, M., Kaneko, S., Haraguchi, K. and Matsukura, U. (2003) Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci. Biotechnol. Biochem. 67: 1832-1835.
Mouillon, J.M., Gustafsson, P. and Harryson, P. (2006) Structural investigation of disordered stress proteins: comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol. 141: 638-650.
Panza, V., Distéfano, A.J., Carjuzaa, P., Láinez, V., del Vas, M. and Maldonado, S. (2007) Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds. Protoplasma 231: 1-5.
Rahman, L.N., Smith, G.S.T., Bamm, V.V., Voyer-Grant, J.A.M., Moffatt, B.A., Dutcher, J.R. et al. (2011) Phosphorylation of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 facilitates cation-induced conformational changes and actin assembly. Biochemistry 50: 9587-9604.
Raz, V., Bergervoet, J.H. and Koornneef, M. (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128: 243-252.
Reyes, J.L., Rodrigo, M.J., Colmenero-Flores, J.M., Gil, J.V., Garay-Arroyo, A., Campos, F., et al. (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ. 28:709-718.
Robertson, M. and Chandler, P.M. (1994) A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol. Biol. 26: 805-816.
Röhrig, H., Schmidt, J., Colby, T., Brautigam, A., Hufnagel, P. and Bartels, D. (2006) Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ. 29:1606-1619.
Rorat, T. (2006) Plant dehydrins: tissue location, structure and function. Cell Mol. Biol. Lett. 11: 536-556.
Saavedra, L., Svensson, J., Carballo, V., Izmendi, D., Welin, B. and Vidal, S. (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J. 45: 237-249.
Sanhewe, A.J. and Ellis, R.H. (1996) Seed development and maturation in Phaseolus vulgaris. I. Ability to germinate and to tolerate desiccation. J. Exp. Bot. 47: 949-958.
Shih, M.D., Hoekstra, F.A. and Hsing, Y.I.C. (2008) Late embryogenesis abundant proteins. Adv. Bot. Res. 48: 211-255.
Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N., et al. (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol. 146: 1738-1758.
Stepien, P. and Johnson, G.N. (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 149: 1154-1165.
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
van Zanten, M., Koini, M.A., Geyer, R., Liu, Y., Brambilla, V., Bartels, D., et al. (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc. Natl. Acad. Sci. USA 108: 20219-20224.
Wilson, K.A. (1980) The released of proteinase inhibitors from legume seeds during germination. Phytochemistry 19: 2517-2519.
Wise, M. J. and Tunnacliffe, A. (2004) POPP the question: what do LEA proteins do?. Trends in Plant Sci. 9: 13-17.
Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M. and Griffith, M. (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol. Plant. 105: 600-608.
Wu, S.J., Wang, J.S., Lin, C.C. and Chang, C.H. (2001) Evaluation of hepatoprotective activity of legume. Phytomedicine 8: 213-219.
Xiao, H. and Nassuth, A. (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep. 25: 968-977.
Xu, J., Zhang, Y.X., Wei, W., Han, L., Guan, Z.Q., Wang, Z., et al. (2008) BjDHNs confer heavy-metal tolerance in plants. Mol. Biotechnol. 38: 91-98.
Yakubov, B., Barazani, O., Shachack, A., Rowland, L.J., Shoseyov, O. and Golan-Goldhirsh, A. (2005) Cloning and expression of a dehydrin-like protein from Pistacia vera L. Trees 19: 224-230.
Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. and Shinozaki, K. (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33: 217-224.
Zhu, J.K. (2001) Plant salt tolerance. Trends Plant Sci. 6: 66-71.