簡易檢索 / 詳目顯示

研究生: 劉韋宏
Liu, Wei-Hung
論文名稱: 雙向解碼轉送中繼網路之基於符元錯誤率的中繼點選擇法
Symbol-Error-Rate Based Relay Selection for Two-Way Decode-and-Forward Relay Networks
指導教授: 王晉良
口試委員: 王晉良
洪樂文
李志鵬
黃家齊
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 45
中文關鍵詞: 雙向解碼轉送中繼網路符元錯誤率中繼點選擇法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線網路中,合作式通訊利用分散式的節點,有效的增加空間分集的特性,以減輕通道衰弱的影響。利用這些中繼站的幫助,使得資料在傳輸的過程中更為可靠,相較於傳統的多輸入多輸出的系統,也能夠將低硬體設計的複雜度。因此,選擇一個最佳的中繼點將成為重要的課題。
    而近來雙向中繼網路受到大家的注目。傳統的單向中繼網路,兩個用戶完成一次交換訊息需要四次通道的使用,使得頻寬效益不高。而雙向中繼網路只需要兩次通道的使用,有效的改善頻寬效益。
    在此篇論文中,我們在雙向解碼後轉送中繼網路的系統提出了選擇中繼點的方法。一開始,我們先針對雙向中繼解碼後轉送網路的系統去分析整體平均字符錯誤率,再根據我們分析並化簡過後的錯誤率結果,提出我們選擇中繼點的方法,有基於通道增益以及距離的方法。模擬結果將顯現出,我們的方法優於幾個常見的選擇中繼點的方法。此外,我們也找出雙向中繼解碼後轉送網路的系統中繼點最佳的位置。


    In this thesis, we propose a single relay selection scheme based on symbol-error-rate (SER) performance analysis for two-way decode-and-forward (DF) relay networks. The proposed scheme aims at selecting the best relay that minimizes the overall average end-to-end SER of the system, where the multiple-access phase, along with the broadcasting phase, is considered. By contrast, the previous works only took the broadcasting phase to form their selection criteria. We first derive a closed-form average end-to-end SER of the system. Then the SER expression is further approximated in the high SNR regime to form a computation-affordable relay selection criterion. The theoretical result of our SER analysis is verified by Monte-Carlo simulations. Moreover, simulation results show that the proposed relay selection scheme achieves significant performance improvement over the random selection scheme and performs very close to the optimal selection scheme in the sense of minimum SER.

    Contents Abstract i Contents ii List of Figures iv List of Tables vi Chapter 1 Introduction 1 Chapter 2 Basics of Cooperative Communication 4 2.1 Basic Concept 4 2.2 System Model: Two-way Decode-and-Forward Relay Networks 5 2.2.1 Channel Model 5 2.2.2 Signal Model 6 Chapter 3 Related Works 8 3.1 One-Way Relaying: SER Analysis 8 3.1.1 SER Analysis for DF Cooperative Communication 8 3.2 One-Way Relaying: Distance-Based Relay Selection 12 3.2.1 Relay Selection Criterion 12 3.2.2 Optimal Relaying Position 13 3.3 Information Rate Comparisons for One-Way and Two-Way Relay Networks 13 3.3.1 Spectral Efficiency of One-Way Relaying Protocols 14 3.3.2 Spectral Efficiency of Two-Way Relaying Protocols 15 3.4 Two-Way Relaying: BER Analysis for AF 16 3.4.1 Performance Analysis 16 3.5 Two-Way Relaying: Relay Selection for AF 19 3.5.1 Relay Selection for Two-Way Amplify-and-Forward Networks 20 Chapter 4 SER Analysis for Two-Way DF Networks 22 4.1 Motivation 22 4.2 Analysis of Exact Average End-to-End SER 22 4.2.1 SER at the Multiple Access Phase 23 4.2.2 SER at the Broadcasting Phase 26 4.3 SER Upper Bound and High-SNR Approximation 28 4.3.1 For the Multiple Access Phase 29 4.3.2 For the Broadcasting Phase 31 Chapter 5 Proposed Relay Selection Schemes for Two-Way DF Relay Networks 33 5.1 Channel Gain Based Scheme 33 5.2 Distance-Based Scheme 34 Chapter 6 Simulation Results 35 Chapter 7 Conclusions 43 References 44

    [1] J. N. Laneman, N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
    [2] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex fading relay channels,” IEEE J. Sel. Areas Commun, vol. 25, pp.379–389, Feb. 2007.
    [3] L. Song, “Relay selection for two-way relaying with amplify-and-forward protocols,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1954–1959, May 2011.
    [4] C.-L. Wang and S.-J. Syue, “A geographic-based approach to relay selection in wireless ad hoc relay networks,” in Proc. 2009 IEEE Vehic. Tech. Conf. (VTC 2009-Spring), Barcelona, Spain, Apr. 2009.
    [5] A. K. Sadek, W. Su, and K. J. R. Liu, “Cooperative communication protocols in wireless networks: performance analysis and optimum power allocation,” Wirel. Pers. Commun., vol. 44, pp. 181–217, Jan. 2008.

    [6] R. W. Yeung, S. Y. R. Li, N. Cai, and Z. Zhang, Network Coding Theory, now Publishers Inc., 2006.
    [7] P. Larsson, N. Johansson, and K. E. Sunell, “Coded bi-directional relaying,” in Proc. 2006 IEEE Vehic. Tech. Conf. (VTC 2006-Spring), May, 2006, pp. 851–855.
    [8] P. Popovski and H. Yomo, “Wireless network coding by amplify-and-forward for bi-directional traffic flows,” IEEE Commun. Lett., vol. 11, no. 1, pp. 16–18, Jan. 2007.
    [9] Y. Li, R. H. Y. Louie, and B. Vucetic, “Relay selection with network coding in two-way relay channels,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4489–4499, Nov. 2010.
    [10] Q. F. Zhou, Y. Li, F. C. M. Lau, and B. Vucetic, “Decode-and-forward two-way relaying with network coding and opportunistic relay selection,” IEEE Trans. Commun., vol. 58, no. 11, pp. 3070–3076, Nov. 2010.
    [11] Y. Hu, K.H. Li and K. Chan, “Performance of two-way amplify-and-forward relay networks over asymmetric channels,” IEEE MILCOM, Oct. 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE