研究生: |
賴岳軍 Lai, Yueh-Chun |
---|---|
論文名稱: |
利用超材料來實現多功能生物感測器及細胞影像與低損耗、高對稱性的人工電磁特性 Realizing multi-functional plasmonic biosensor/bio-imaging and artificial electromagnetic response with low-loss and high-symmetry properties by metamaterials |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
金重勳
杜正恭 孫啟光 果尚志 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 超材料 、生物感測器 、介電質共振器 、隙環共振器 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超材料(metamaterials)為人工電磁材料,係由單位尺寸小於入射光波長所組成的結構。超材料的性質來自於內部結構產生共振的集合響應,所展現出物理與光學特性是自然界材料所無法展現的性質。其中,Pendry等科學家提出用來展現負透磁率(negative permeability)與高頻磁子(high magnetism)的人造磁性原子¬-隙環共振器(split-ring resonators)ㄧ直是最常設計來產生磁特性的超材料。ㄧ般而言,其基態的共振模態行為是透過等效的電容¬-電感電路概念來解釋並且其複數個共振響應的特性可以藉由駐波式電漿共振響應模型(standing-wave plasmonic resonance model)來闡釋並預估其所對應的響應波長。更重要的是,此共振模態對隙環共振器周圍介質環境很敏感,特別是當生物分子結合於隙環共振器的表面時,其共振模態的頻率位置會移動,使其可作為即時的、不需標定的折射率式細胞生物感測器。
因此我們對隙環共振器多模態共振生物感測器的相對靈敏度與偵測長度做深入調查,依據我們模擬與實驗的結果,藉由在隙環共振器上加上不同厚度的介電層,我們可以對隙環共振器上反射光譜中各個共振模態的靈敏度與偵測長度作一定量描述,使奈米尺寸下的隙環共振器可以作為無需耦合、可調控頻率範圍的多模態生物感測器。由於隙環共振器的共振模態具有無需標定、無需耦合、可調控頻率範圍(從中紅外線到可見光)、深的偵測長度等特性,我們因此發展出隙環共振器顯微影像(split-ring resonators microscopy),與表面電漿共振顯微影像做比較,此隙環共振器顯微影像更可以用來觀測生物分子。我們的實驗結果顯示可以利用此技術來觀測人類間葉幹細胞內部的折射率分布圖,且同時可以得到待測細胞官能基的資訊。因此,我們預期此隙環共振器顯微影像可以實現更簡單的光學組態與更佳的偵測深度來作全細胞影像的應用。
除此之外,我們也利用高介電常數的陶瓷材料例如二氧化鋯,氧化鋁等在微波頻段下來設計使傳統電磁光學規則相反的負折射率介質。從週期排列的商業用二氧化鋯(氧化鋁)立方體塊材,由於結合其displacement current與Mie resonance我們可以設計人造磁偶極與電偶極。藉由改變這些介電質共振器的大小與週期,其對應的磁性反應與電性反應可控制在設計的頻率。若更進一部的調整電性反應與磁性反應在相同頻率下,我們可以從單一種類的介電質共振器創造出負折射率介質(negative refractive index media; NRIM) 。另一方面,我們也混成商業用的二氧化鋯與氧化鋁獨自的電性反應與磁性反應來產生負折射率介質。
最後我們也討論一對介電質共振器的Mie resonance的耦合效應,特別是在幾何非對稱排列下其可以耦合出獨特的電磁反應例如超材料誘發透明現象(metamaterials-induced transparency; MIT),當混成一對相同的介電質共振器或是一對不同的介電質共振器,與金屬型式超材料比較,我們可以得到較大的group index,較佳的頻寬延遲乘積(bandwidth-delay product; BDP~0.9)。能有這些特色的關鍵在於藉由控制介電質共振器之間的介電常數對比,我們可以激發trapped mode or the suppressed mode共振。與金屬式的超材料相比,介電質式的超材料擁有低損耗,高對稱性等優點,使其有優勢於通訊元件,完美透鏡,隱形斗篷與其它電磁元件等相關應用。
Metamaterials are artificial electromagnetic materials in which the size of building elements is smaller than the wavelength of illuminating light. Based on the collective resonances in internal designed structures, metamaterials enable physical and optical properties that have not been achieved in naturally existing materials. Among diverse metamaterials, it is the split-ring resonator (SRR) structure a pioneering design proposed by Pendry et al. as magnetic meta-atoms to achieve negative magnetic permeability and high-frequency magnetism. The fundamental resonant behaviors of SRRs are conventionally understood by the equivalent LC circuit model and the multiple resonant reflectance peaks under normal incidence can be elucidated by model of standing-wave plasmonic resonances. More importantly, such a resonance condition depends on the local dielectric environment so sensitively that the SRRs can be readily employed as refractive-index (RI) sensors, especially for real-time, label-free and cell-level bimolecular detections by monitoring the shifts of reflectance peaks as analytes binding to molecular receptors immobilized on the SRR surface.
Thus, we present a comprehensive understanding of the relative sensitivity and the detection length about the multi-mode plasmonic resonances in the planar SRR structure. By applying thin dielectric layers with different thicknesses on the SRR array, we demonstrate a quantitative interpretation to the distinct sensing behaviors (including sensitivity and detection length) of each resonance mode in the multi-resonance reflectance spectra based on both simulation and experimental results, present a coupler-free, scalable and multi-mode refractive index sensor based on nano-structured split ring resonators. Next, we develop a compact plasmonic bioimages based on SRRs. Owning advantages such as label-free, coupler-free, tunable spectrum range (from MIR to VIS) and longer detection length, the SRR microscopy (SRRM) is a strong competitor compared to the surface plasmon resonance microscopy (SPRM) for observing bio-target. Our experimental results has successfully demonstrated its capability of constructing the refractive index distribution images of human bone marrow-derived mesenchymal stem cells (hMSCs) and meanwhile, obtaining the information of functional groups from the target cells. Therefore, we expect that the SRR microscopy (SRRM) delivers much simple optical configuration and better penetration depth for truly whole-cell imaging applications.
In addition, we utilize high dielectric constant ceramic materials such as zirconia, alumina to design negative refractive index media (NRIM) in the microwave region that have attracted significant attention for their potential to revise conventional electromagnetic rules involving refractive indices such as inverse optical rules. From a periodic array of commercially available zirconia (Alumina) cubes, we demonstrate artificial magnetic and electric dipoles due to the combination of displacement currents and Mie resonance. By scaling the size and periodicity of these dielectric resonators, the corresponding magnetic and electric responses are shifted to the desired frequencies. To further overlap the magnetic and electric resonances in the same frequency, we create a negative refractive index medium from single-dielectric resonators. On the other hand, we hybridize commercially available zirconia and alumina structures to harvest their individual artificial magnetic and electric response simultaneously, presenting a negative refractive index medium.
Finally, we introduce the coupling of Mie resonances in the dielectric resonator pairs, especially in the asymmetric case that supports an extraordinary electromagnetic response such as metamaterials-induced transparency (MIT) phenomena. Using two hybrid structures of identical-dielectric-constant resonators (IDRs) and distinct-dielectric-constant resonators (DDRs), we demonstrate a larger group index (ng~354), better bandwidth-delay product (BDP~0.9) than metallic-type metamaterials. The keys to enable these properties are to excite either the trapped mode or the suppressed mode resonances, which can be managed by controlling the contrast of dielectric constants between the dielectric resonators in the hybrid metamaterials. Comparing with the conventional metamaterials-based applications constructed by metallic elements, the demonstrated all-dielectric metamaterials possesses low-loss and high-symmetry advantages, thus benefiting practical applications in communication components, perfect lenses, invisible cloaking and other novel electromagnetic devices.
1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
6. N. Seddon, and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
7. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, Jr., B. I. Wu, J. A. Kong, and M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express 11(7), 723–734 (2003).
8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
9. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
10. N. Fang, H. Lee, C. Sun and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534-537 (2005).
11. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
12. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
13. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
14. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115-1127 (2007).
15. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
16. C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93, 034110 (2008).
17. H. J. Lee, and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008).
18. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
19. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
20. C. M. Soukoulis, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B, 244, 1181-1187 (2007).
21. C. Rockstuhl, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827-8836 (2006).
22. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: Limits of size scaling,” Opt. Lett. 31, 1259-1261 (2006).
23. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
24. S. O’Brien, and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter. 14, 4035-4044 (2002).
25. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci.USA 106, 1693-1698 (2009).
26. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler. Metallösungen,”
Ann. Phys. 25, 377-445 (1908).
27. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001).
28. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett. 95, 071111-071113 (2009).
29. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
30. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
31. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
32. Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93(18), 184103 (2008).
33. G. H. W. Sanders, and A. Manz, “Chip-Based Microsystems for Genomic and Proteomic Analysis,” Trends Anal. Chem. 19, 364-378 (2000).
34. S. Solinas Toldo, S. Lampel, S. Stilgenbauer, J. Nickolenko, A. Benner, H. Dohner, T. Cremer, and P. Lichter, “Matrix-Based Comparative Genomic Hybridization: Biochips To Screen for Genomic Imbalances,” Genes Chromosomes Cancer. 20, 399-407 (1997).
35. X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, “The Power and Prospects of Fluorescence Microscopies and Spectroscopies,” Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
36. S. E. D Webb, S. K. Roberts, S. R. Needham, C. J. Tynan, D. J. Rolfe, M. D. Winn, D. T. Clarke, R. Barraclough, and M. L. Martin-Fernandez, “Single-Molecule Imaging and Fluorescence Lifetime Imaging Microscopy Show Different Structures for High- and Low-Affinity Epidermal Growth Factor Receptors in A431 Cells,” J. Biophys. 94, 94, 803-819 (2008).
37. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater. 23, 3197-3201 (2011).
38. J. Homola, S. S. Yee, and G. T. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1-2), 3–15 (1999).
39. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express. 15, 1745-1754 (2007).
40. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer (1988).
41. P. N. Prasad, “Introduction to Biophotonics,” Wiley-Interscience (2003).
42. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl Acad. Sci. 101, 17930-17935 (2004).
43. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shan, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
44. K. Li, X. Li, M. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B. 71, 115409 (2005).
45. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
46. C. Y. Chen and T. J. Yen, “Electric and magnetic responses in the multiple-split ring resonators by electric excitation,” Journal of Applied Physics 105, 124913-124913-5 (2009).
47. A. Cunningham, “Introduction to Bioanalytical Sensors (techniques In Analytical Chemistry),” John Wiley & Sons (1998).
48. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
49. M. M. Miller, and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), 239 (2006).
50. S. A. Maier, “Plasmoincs: Fundamentals and Applications,” Springer, pp. 31 (2007).
51. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A Atwater, “Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability,” Nano Lett. 10(10), 4222-4227 (2010).
52. D. M. Shotton, “Confocal scanning optical microscopy and its application for biological specimens,” J. Cell Sci. 94, 175 (1989).
53. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
54. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 11, 246 (2008).
55. R. J. Kittel, C. Wichmann, T. M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D. A. Wagh, C. Pawlu, R. R. Kellner, K. I. Willig, S. W. Hell, E. Buchner, M. Heckmann, and S. J. Sigrist, “High-resolution thin-film device to sense texture by touch,” Science 312, 1501 (2006).
56. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)” Nature Methods 3, 793 (2006).
57. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
58. H. Peng, “Bioimage informatics: a new area of engineering biology,” Bioinformatics 24, 1827 (2008).
59. G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379, 328 (2004).
60. S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron 25(5), 957 (2010).
61. T. M. Chinowsky, M. S. Grow, K. S. Johnston, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22, 2208 (2007).
62. H. J. Lee, H. S. Lee, H. S. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave regime,” J. Appl. Phys. 108, 014908 (2010).
63. X. J. He, Y. Wang, J. M. Wang, and T. L. Gui, “Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application,” Microsyst. Technol. 16, 1735 (2010).
64. X. J. He, L. Qiu, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “A Compact Thin-Film Sensor Based on Nested Split-Ring-Resonator (SRR) Metamaterials for Microwave Applications,” J. Infrared Milli. Terahz. Waves. 32, 902 (2011).
65. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18, 9561 (2010).
66. O. K. Lee, Y. C. Ko, T. K. Kuo, S. H. Chou, H. J. Li, and W. M. Chen, “Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells.” J. Cell Biochem, 93, 917 (2004).
67. K. D. Lee, T. K. Kuo, Whang-Peng J, Y. F. Chung, C. T. Lin, and S. H. Chou, “In vitro hepatic differentiation of human mesenchymal stem cells,” Hepatology. 40, 1275 (2004).
68. Y. L. Chiang, C. H. Lin, M. Y. Yen, Y. D. Su, S. J. Chen, and H. F. Chen, “Innovative antimicrobial susceptibility testing method using surface plasmon resonance,” Biosens. Bioelectron. 24, 1905 (2009).
69. C. T. Li, T. J. Yen, and H. F. Chen, “A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors,” Opt. Express 17, 20771 (2009).
70. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” J. Biophys. 14, 439-453 (1974).
71. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17, 15372 (2009).
72. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312 (2011).
73. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
74. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
75. Y. J. Chiang, T. J. Yen, “A highly symmetric two-handed metamaterial spontaneously matching the wave impedance,” Opt. Lett. 16, 12764-12770 (2008).
76. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variation,” Phys. Rev. B 75, 235114 (2007).
77. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
78. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.C. Panoiu, R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922-4930 (2005).
79. H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430-432 (2007).
80. J. Yao, Z. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321, 930-930 (2008).
81. S. O’Brien, and J. B. Pendry. “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. 14, 4035-4044 (2002).
82. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental Observation of Left-handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98, 157403 (2007).
83. T. D. Corrigan, P.W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structure: an improved LC model,” Opt. Express 16, 19850-19864 (2008).
84. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).
85. G. Shvets, and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett. 93, 243902 (2004).
86. J. D. Jackson, “Classical Electrodynamics,” 3rd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1999.
87. Kittel, C. “Introduction to Solid State Physics,” 7th ed.; John Wiley and Sons Inc.: New York, NY, USA, 1996.
88. L. Lewin, “The electrical Constants of a Material Loaded with Spherical Particles,” Proc. Inst. Elect. Eng. 94, 65-68 (1947).
89. D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Cut-wire-pair structures as two-dimensional magnetic metamaterials,” Opt. Express 16, 15185-15190 (2008).
90. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler. Metallösungen,” Ann. Phys. 25(4), 377–445 (1908).
91. W. X. Huang, Y. Zhang, X. M. Tang, L. S. Cai, J. W. Zhao, L. Zhou, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, "Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36, 3359 (2011).
92. C. K. Chen, Y. C. Lai, Y. H. Yang, C. Y. Chen, and T. J. Yen, “Electromagnetically Induced Transparency-like Phenomena with Large Magnetic Response and Group Indices by Hybrid Dielectric Metamaterials,” Opt. Express 20, 6952-6960 (2012).
93. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
94. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
95. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
96. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
97. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
98. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
99. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
100. H. Mosallaei and A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
101. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
102. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
103. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
104. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
105. X. D. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Erratum: Retrieval of the effective constitutive parameters of bianisotropic metamaterials (vol 71, pg 046610, 2005)," Phys. Rev. E 73 (2006).
106. Y. Liu, N. Fang, D. Wu, C. Sun, and X. Zhang, "Symmetric and antisymmetric modes of electromagnetic resonators," Appl. Phys. a-Mater 87, 171-174 (2007).
107. A. Rose, S. Larouche, and D. R. Smith, "Quantitative study of the enhancement of bulk nonlinearities in metamaterials," Phys. Rev. A 84 (2011).