簡易檢索 / 詳目顯示

研究生: 李安韻
Lee, An-Yun
論文名稱: 根據個人關注議題探索商業生態資訊
Exploring Business Ecological Information with Personal Attention
指導教授: 林福仁
Lin, Fu-Ren
口試委員: 雷松亞
李永銘
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 44
中文關鍵詞: 文件探勘個人化擴散激發理論關聯擷取
外文關鍵詞: text mining, personalization, spreading activation, relation extraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在Web2.0的時代,資訊量持續以倍數的速度成長,造成資訊過載的問題越來越嚴重,這樣的問題使使用者無法適時的得到需要的資訊。過多的搜尋結果除了讓一般的網路資訊收集變得困難之外,商業分析師也因此需要花更多的成本以了解企業相關的重要關係,分析產業或科技的資訊需要經過龐大的資料分析工作才能完成。
    為了減輕資訊過載的問題,我們根據關聯擷取(relation extraction)的技術所建立的商業生態關聯網路設計一個查詢方法,以期降低使用者搜尋資料的成本,同時提升資訊搜尋的效果,首先結合語意關聯資料,將網際網路上不同來源的資訊做抽象概念的統整,並透過個人化的技術協助資訊過濾,此外,透過擴散激發理論(spreading activation model)搜尋相關的商業知識。
    本研究提出的搜尋方法可讓使用者發現更多的商業關聯資訊,進而協助商業分析師從事探索式搜尋(exploratory search),根據實驗的結果,使用本方法搜尋的使用者,相較於使用單純的關鍵字比對及單純的使用者設定(user profile)比對,可在新聞資料中發掘更多的商業關聯。


    Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 2 1.3 Research Objective 3 Chapter 2 Literature review 5 2.1 Relation Extraction 5 2.2 Personalization 7 2.3 Semantic Web 10 2.4 Spreading Activation Theory 11 Chapter 3 Research Framework 14 3.1 System Architecture 15 3.2 User Browsing Module 15 3.3 Knowledge Map Maintenance Module 17 3.3.1 Personal Attention Tracking 17 3.3.2 Semantic Relation Tracking 19 Chapter 4 System Implementation and Experimental Design 23 4.1 Data Sources 23 4.2 System Implementation 24 4.3 Evaluation Criteria 25 4.4 Experimental Design 25 Chapter 5 Experimental Results 30 5.1 Information Quality 30 5.2 Effectiveness of Information Search 31 5.3 Moderation Effect of Knowledge Map 33 Chapter 6 Conclusion and Future Work 37 References 38 Appendix 41

    Adomavicius, G., & Tuzhilin, A. (2005). Personalization technologies: a process-oriented perspective. Communications of the ACM, 48(10), 83-90.
    Ahn, J., Brusilovsky, P., Grady, J., He, D., & Florian, R. (2010). Semantic annotation based exploratory search for information analysts. Information processing & management, 46(4), 383-402.
    Billsus, D., & Pazzani, M. (2007). Adaptive news access. The adaptive web, 550-570.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann, S. (2009). DBpedia-A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3), 154-165.
    Blanco-Fernández, Y., López-Nores, M., Gil-Solla, A., Ramos-Cabrer, M., & Pazos-Arias, J. J. (2011). Exploring Synergies between Content-based Filtering and Spreading Activation Techniques in Knowledge-based Recommender Systems. Information Sciences.
    Castano, S., Ferrara, A., & Montanelli, S. (2011). Structured data clouding across multiple webs. Information Systems.
    Cheng, C. P. (2010). The Enhancement of Relation Extraction in Discovering Business Ecosystems for a Technology Monitoring Service. Mater thesis, National Tsing Hua University, Taiwan.
    Citroen, C. L. (2011). The role of information in strategic decision-making. International Journal of Information Management.
    Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological review, 82(6), 407.
    Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artificial intelligence review, 11(6), 453-482.
    De Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F., & Semeraro, G. (2009). Preference learning in recommender systems. PREFERENCE LEARNING, 41.
    Fundel, K., Küffner, R., & Zimmer, R. (2007). RelEx—Relation extraction using dependency parse trees. Bioinformatics, 23(3), 365-371.
    Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., . . . Manfrediz, A. (2009). Idc-the expanding digital universe: A forecast of worldwide information growth through 2010.
    Gao, X., Murugesan, S., & Lo, B. (2005). Extraction of Keyterms by Simple Text Mining for Business Information Retrieval. Paper presented at the Proceedings of the IEEE International Conference on e-Business Engineering.
    Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. Mis Quarterly, 28(1), 75-105.
    Jiang, X., & Tan, A. H. (2009). Learning and inferencing in user ontology for personalized Semantic Web search. Information Sciences, 179(16), 2794-2808.
    John Gantz, A. B., Seana Dowling. (2009). Cutting the Clutter: Tackling Information Overload At the Source. 11. Retrieved from http://www.xerox.com/assets/motion/corporate/pages/programs/information-overload/pdf/Xerox-white-paper-3-25.pdf
    Kalyanaraman, S., & Sundar, S. S. (2006). The psychological appeal of personalized content in web portals: does customization affect attitudes and behavior? Journal of Communication, 56(1), 110-132.
    Kuo, Y. F., & Chen, L. S. (2001). Personalization technology application to Internet content provider. Expert Systems with Applications, 21(4), 203-215.
    López-Nores, M., Blanco-Fernández, Y., Pazos-Arias, J. J., Fernández-Vilas, A., & Ramos-Cabrer, M. (2011). Automatic provision of personalized e-commerce services in Digital TV scenarios with impermanent connectivity. Expert Systems with Applications, 38(10), 12691-12698. doi: 10.1016/j.eswa.2011.04.056
    Lang, K. (1995). Newsweeder: Learning to filter netnews.
    Lavie, T., Sela, M., Oppenheim, I., Inbar, O., & Meyer, J. (2010). User attitudes towards news content personalization. International journal of human-computer studies, 68(8), 483-495.
    Liang, T. P., Lai, H. J., & Ku, Y. C. (2007). Personalized content recommendation and user satisfaction: Theoretical synthesis and empirical findings. Journal of Management Information Systems, 23(3), 45-70.
    Liang, T. P., Yang, Y. F., Chen, D. N., & Ku, Y. C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401-412.
    Marchionini, G. (2006). Exploratory search: from finding to understanding. Communications of the ACM, 49(4), 41-46.
    Nanas, N., Vavalis, M., & Houstis, E. (2010). Personalised news and scientific literature aggregation. Information processing & management, 46(3), 268-283.
    Ochs, C., Tian, T., Geller, J., & Chun, S. (2011). Google Knows Who is Famous Today--Building an Ontology from Search Engine Knowledge and DBpedia.
    Passant, A., & Raimond, Y. (2008). Combining Social Music and Semantic Web for music-related recommender systems.
    Posner, M. I., & Petersen, S. E. (1989). The attention system of the human brain: DTIC Document.
    Quillian, M. R. (1968). Semantic memory. Semantic information processing, 2(6), 227-270.
    Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In B. Peter, K. Alfred & N. Wolfgang (Eds.), The adaptive web (pp. 291-324): Springer-Verlag.
    Schiel, U. (1989). Abstractions in semantic networks: axiom schemata for generalization, aggregation and grouping. SIGART Bull.(107), 25-26. doi: 10.1145/65751.65752
    Stan, J., Maret, P., & Do, V. H. (2011). Semantic User Interaction Profiles for Better People Recommendation.
    Trend #6: Managing information overload. (2009, 2009/10/15). Trends E-Magazine.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE