研究生: |
朱恩廷 Chu, En-Ting |
---|---|
論文名稱: |
熱電元件性能參數快速檢測法開發 A Novel Method to Rapidly Determine The Key Properties of Thermoelectric Devices |
指導教授: | 饒達仁 |
口試委員: |
廖建能
簡恆傑 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 熱電模組 、內電阻 、熱傳導率 、熱電優值 、席貝克參數 |
外文關鍵詞: | Thermoelectric module, Internal resistance, Thermal conductivity, Figure of merit, Seebeck coefficient |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對熱電模組開發出新式的量測方法,斜率量測法。有別於以往量測熱電模組的方法,斜率量測法以簡單的手法即可獲得熱電模組性能參數,如Seebeck coefficient、Internal resistance、Thermal conductivity等。對於熱電模組這三個性能參數最為重要,當獲得此三個參數後,可再透過數學關係式求得模組輸出功率、發電效率等。
斜率量測法是以Peltier effect做為量測依據的一個嶄新方法;量測開始,將會提供模組一微小定電流(小於1A),輸入電流後的模組產生Peltier effect而模組兩端溫差開始加大,量測輸入電流後模組兩端跨壓與溫差,此兩者關係近似直線,將此兩者實驗結果做出擬合曲線再進行分析,可以發現此線段之斜率等於Seebeck coefficient,因此我們稱此方法為斜率量測法(SLOPE METHOD)。
本研究所發展之量測方法單次量測實驗耗時約2分鐘,與傳統以Seebeck effect做為量測依據的量測法動輒需要半個小時相比,節省了多數的時間,因此可以大量累積量測數據進行整理。與多數人常用的Harman Method相比,雖然時間上耗時相當,但斜率量測法使用了簡單的量測儀器即可獲得模組多數的性能參數,因此相較之下亦具有其競爭力。
斜率量測法量測結果為模組材料特性,無法直接獲得模組發電時的輸出功率、效率等,因此我們將量測結果代入軟體ANSYS分析,可簡單迅速的獲得模組輸出效能。
透過斜率量測法與分析軟體的搭配,可迅速獲得模組的實際發電效率與運作效能。快速量測的優勢使得工業使用、學術研究等更為方便簡單,亦可大量累積量測數據,增加量測結果的可信度。
This study presents a novel method, SLOPE METHOD, to determine the representative properties of a thermoelectric module. Different from other measuring methods, slope method can easily obtain the parameters like Seebeck coefficient, Internal resistance, Thermal conductivity. The parameters which could determine the efficiency of thermoelectric module are important. By using these three parameters, we can obtain power output, efficiency, and so on.
Applying a constant current to a thermoelectric module then measuring the module's transient voltage and both sides temperatures, the relation between voltage and temperature difference could be used to obtain a fitting curve, the slope of the curve equals to Seebeck coefficient, so we can rapidly determine the module's effective properties.
Comparing to the traditional measuring method which based on Seebeck effect, slope method spent less time about 2 minutes, so it could save lots of experiment time. Other like Harman method can obtain the figure of merit of thermoelectric module rapidly, but it should cooperate with other experiments if we want other parameters. This shows that the slope method have some advantage different from Harman method.
Slope method can’t obtain the power output directly while thermoelectric module using for power generating. Because of this reason, we use the software called ANSYS to simulate the real working conditions. We put the parameters obtained from slope method into ANSYS, and we can get the power output and efficiency easily. By using slope method and software, we could predict the performance easily, rapidly and accurately.
[1] B. Ciylan and S. Yilmaz, "Design of a thermoelectric module test system using a novel test method," International Journal of Thermal Sciences, vol. 46, pp. 717-725, Jul 2007.
[2] D. M. Rowe and G. Min, "Evaluation of thermoelectric modules for power generation," Journal of Power Sources, vol. 73, pp. 193-198, 1998.
[3] J. Yang, "Potential applications of thermoelectric waste heat recovery in the automotive industry," in Thermoelectrics, 2005. ICT 2005. 24th International Conference on, 2005, pp. 170-174.
[4] R. Chein and G. Huang, "Thermoelectric cooler application in electronic cooling," Applied Thermal Engineering, vol. 24, pp. 2207-2217, 2004.
[5] D.-J. Yao, et al., "Efficient reuse of waste energy," Nanotechnology Magazine, IEEE, vol. 3, pp. 28-33, 2009.
[6] R. Coekelbergs, et al., J. Phys. Chem. Sol., vol. 26, p. 1983, 1965.
[7] W. Waclawek and M. Zabkowska, "Apparatus for the measurement of thermoelectrical properties," Journal of Physics E: Scientific Instruments, vol. 14, p. 618, 1981.
[8] R. Ahiska, "Computer controlled test system for measuring the parameters of the real thermoelectric module," Energy Conversion and Management, vol. 52, p. 27, 2011.
[9] P. Dziurdzia and A. Mirocha, "From constant to temperature dependent parameters based electrothermal models of TEG," in Mixed Design of Integrated Circuits & Systems, 2009. MIXDES '09. MIXDES-16th International Conference, 2009, pp. 555-559.
[10] G. Liang, et al., "Output Characteristics Analysis of Thermoelectric Generator Based on Accurate Numerical Model," in Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, 2010, pp. 1-4.
[11] L. I. Anatychuk and M. V. Havrylyuk, "Procedure and Equipment for Measuring Parameters of Thermoelectric Generator Modules," Journal of Electronic Materials, vol. 40, pp. 1292-1297, 2011.
[12] R. Ahiska and K. Ahiska, "New method for investigation of parameters of real thermoelectric modules," Energy Conversion and Management, vol. 51, pp. 338-345, Feb 2010.
[13] H. Bougrine and M. Ausloos, Rev. Sci. Instrum., vol. 66, p. 199, 1995.
[14] Y. Xin, et al., Rev. Sci. Instrum., vol. 63, p. 2263, 1992.
[15] G. U. Sumanasekera, et al., "Low-temperature thermoelectrical power measurements using analogue subtraction," Measurement Science and Technology, vol. 11, p. 273, 2000.
[16] W. H. Kettler, et al., Rev. Sci. Instrum., vol. 57, p. 3053, 1986.
[17] E. Toba, et al., Rev. Sci. Instrum., vol. 66, p. 3680, 1995.
[18] A. D. Downey and T. P. Hogan, "Circuit model of a thermoelectric module for ac electrical measurements," in Thermoelectrics, 2005. ICT 2005. 24th International Conference on, 2005, pp. 79-82.
[19] S. Dilhaire, et al., "Determination of ZT of PN thermoelectric couples by AC electrical measurement," in Thermoelectrics, 2002. Proceedings ICT '02. Twenty-First International Conference on, 2002, pp. 321-324.
[20] D. Mitrani, et al., "Methodology for extracting thermoelectric module parameters," in Instrumentation and Measurement Technology Conference, 2004. IMTC 04. Proceedings of the 21st IEEE, 2004, pp. 564-568 Vol.1.
[21] H. Iwasaki and H. Hori, "Thermoelectric property measurements by the improved Harman method," in Thermoelectrics, 2005. ICT 2005. 24th International Conference on, 2005, pp. 513-516.
[22] R. Simons, "Application of Thermoelectric Coolers for Module Cooling Enhancement," ElectronicsCooling, vol. Vol. 6, No. 2, 2000.
[23] D. M. Rowe, "Thermoelectrics Handbook," 2005.
[24] Y. Noda, et al., "Preparation and characterization of segmented-type thermoelectric branches of Bi2Te3/PbTe," in Thermoelectrics, 1997. Proceedings ICT '97. XVI International Conference on, 1997, pp. 371-374.