研究生: |
鄭耿豪 Cheng, Keng-Hao |
---|---|
論文名稱: |
(AlCrTaTiZr)-Six-N多元氮化物鍍膜微結構、機械性質與高溫氧化行為之研究 Study on Microstructures, Mechanical Properties and Oxidation Behavior of Multi-component (AlCrTaTiZr)-Six-N Coatings |
指導教授: |
林樹均
Lin, Su-Jien |
口試委員: |
葉均蔚
洪健龍 李勝隆 曹春暉 張守一 林樹均 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 211 |
中文關鍵詞: | 多元氮化物 、高熵氮化物 、硬質鍍膜 、機械性質 、抗氧化能力 |
外文關鍵詞: | Multi-component nitride, High-entropy nitride, Hard coating, Mechanical property, Oxidation resistance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用反應式射頻磁控濺鍍法,以AlCrTaTiZr高熵合金靶材與Si靶材共濺鍍的方式製備不同矽含量之多元氮化物(AlCrTaTiZr)-Six-N鍍膜,並探討矽含量對於鍍膜微結構、機械性質、磨潤性質以及抗氧化能力之影響。最後亦將性質優異之氮化物硬膜鍍覆在拋棄式三角銑刀上進行304不鏽鋼以及SKD11工具鋼的切削測試。
實驗結果發現,多元氮化物鍍膜在低矽含量時仍然呈現單一FCC結構,直到矽含量達到7.9 at%時,非晶相SiNx開始於晶界上析出,此時多元氮化物鍍膜轉變為奈米複合結構,且隨著矽含量的繼續增加,非晶相的比例亦持續增加,致使鍍膜結構中FCC氮化物晶粒大小大幅度的下降。
多元氮化物鍍膜硬度約為34 GPa,且隨著矽元素的添加沒有明顯的改變,但是當矽含量達到10.2 at%時,硬度大幅度下降至26 GPa。此軟化現象主要歸因於鍍膜結構中析出大量的SiNx非晶相,導致整體硬度明顯的下降。在摩潤性質的研究中,多元氮化物鍍膜對鉻鋼球的磨耗行為以溫和的擦損磨耗為主,摩擦係數約為0.79,磨耗速率約為6.0×10-6 mm3/N•m,且隨著矽含量的增加有些微的上升;但是當矽含量達到10.2 at%時,鍍膜之磨耗行為轉變為摩潤化學磨耗,此時摩擦係數降低為0.74,磨耗速率也因鍍膜表面生成氧化層以及部分鉻鋼球的黏著而大幅降低。
矽元素的添加大幅度的改善多元(AlCrTaTiZr)N鍍膜之抗氧化能力。矽含量為7.9 at%之氮化物鍍膜在經過1000 °C,2小時的氧化實驗後仍然保有初鍍狀態的氮化物結構,且鍍膜表面僅生成厚度約330 nm之氧化層。此抗氧化能力的提升歸因於在鍍膜氧化時,非晶SiO2於晶界上形成並阻擋氧原子的擴散,並且當高矽含量時因形成奈米複合結構,亦可藉由非晶SiNx的析出阻礙氧原子的擴散。此外,當氮化物鍍膜在1000 °C進行氧化時,表面會額外生成一層富矽、鋁的氧化表層以及一層富鉻、鋁的氧化層,這些具有保護性的氧化物提供額外的抗氧化能力,使多元氮化物之氧化速率大幅度的下降。
由切削測試結果發現,對304不鏽鋼進行切削時,與工業上所使用的TiN及TiAlN鍍膜相比,多元氮化物鍍膜具有最低的磨損量及磨耗速率;對於SKD11工具鋼進行切削時,因工作溫度的上升突顯出抗氧化能力的重要性,此時添加矽的多元氮化物鍍膜則具有最低的磨損量及磨耗速率,由此可見,本研究開發的(AlCrTaTiZr)-Si-N鍍膜具有優異的切削性質,在工業應用上極具潛力。
The aim of this study is to develop a novel nitride material as a protective coating, which enhances the surface hardness, wear resistance, thermal stability and oxidation resistance of the machining tools. Multi-component (AlCrTaTiZr)-Six-N coatings were deposited on silicon wafers, cemented carbide substrates and cutting inserts by reactive RF magnetron co-sputtering of an equimolar AlCrTaTiZr alloy target and a pure silicon target. The effect of silicon content on the microstructures, mechanical properties, tribological behavior and oxidation resistance was studied. Nitride films with low silicon content remained a simple FCC (face-centered cubic) structure. As the silicon content reached 7.9 at%, thermodynamically driven phase separation occurred, leading to a nanocomposite structure consisting of an FCC solid-solution nitride and an amorphous SiNx phase. These nitride films exhibited high hardness of 34 GPa and remained a constant level up to 7.9 at% Si. The reduced hardness at silicon content of 10.2 at% was attributed to the appreciable amounts of softer amorphous segregation. These nitride films showed a mild polishing wear behavior with higher friction coefficient from 0.79 to 0.83 and a higher wear rate from 6.0×10-6 mm3/N•m to 9.8×10-6 mm3/N•m with increasing silicon content, while the film with the silicon content of 10.2 at% showed a tribochemical wear behavior having the lowest friction coefficient of 0.74 and an almost undetectable wear rate due to the oxidized products and transferred materials on the worn surface. Silicon incorporation significantly improved the oxidation resistance of the (AlCrTaTiZr)N films. The nitride film with the silicon content of 7.9 at% annealed at 1000 °C for 2 h in air only had a 330 nm-thick oxide layer. This improvement was attributed to the amorphous SiO2 boundary around the crystallites, and the nanocomposite structure (for high silicon content) with the presence of amorphous SiNx phase. The presence of protective skin surface consisting SiO2 and Al2O3 and the subsequent sublayer consisting of Cr2O3 and Al2O3 also accounted for the further improved oxidation resistance at such a high temperature. Comparing with the present state-of-the-art protective hard coatings, the inserts with multi-component nitride coatings exhibited lower tool wear rates when machining stainless steel. The silicon-containing nitride coating had better performance when machining SKD11 tool steel due to the much improved oxidation resistance. In this study, the optimum silicon content of the multi-component nitride coatings is 7.9 at% since it gives the best combination result of hardness and oxidation resistance and consequently the best cutting performance. These coatings are indeed applicable to the manufacturing and processing industry.
[1] C. Friedrich, G. Berg, E. Broszeit, C. Berger, "Fundamental economical aspects of functional coatings for tribological applications", Surf. Coat. Technol. 98 (1998) 816.
[2] R. Melley, P. Wissner, “The Real Costs of Lubrication”, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 1997. (http://www.betterfuel.org/pdfs/Lubricity_RealCostofLube.pdf)
[3] W.D. Sproul, "New routes in the preparation of mechanically hard films", Science 273 (1996) 889.
[4] R.F. Bunshah, A.H. Shabaik, R. Nimmagadda, J. Covy, "Machining studies on coated high-speed steel tools", Thin Solid Films 45 (1977) 453.
[5] R. Hauert, J. Patscheider, "From alloying to nanocomposites - Improved performance of hard coatings", Adv. Eng. Mater. 2 (2000) 247.
[6] J. Musil, "Hard and superhard nanocomposite coatings", Surf. Coat. Technol. 125 (2000) 322.
[7] S. PalDey, S.C. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review", Mater. Sci. Eng. A 342 (2003) 58.
[8] S. Veprek, A.S. Argon, "Mechanical properties of superhard nanocomposites", Surf. Coat. Technol. 146 (2001) 175.
[9] H.D. Mannling, D.S. Patil, K. Moto, M. Jilek, S. Veprek, "Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides", Surf. Coat. Technol. 146 (2001) 263.
[10] K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, "Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets", Ann. Chim. Sci. Mat. 31 (2006) 723.
[11] W.R. Grove, "On the electro-chemical polarity of gases", Phil. Trans. Roy. Soc. London 142 (1852) 87.
[12] A.W. Wright, "On the production of transparent metallic films by the electrical discharge in exhausted tubes", Am. J. Sci. Arts 13 (1877) 49.
[13] D.M. Mattox, "Particle bombardment effects on thin-film deposition - A review", J. Vac. Sci. Technol. A 7 (1989) 1105.
[14] R.K. Waits, "Planar magnetron sputtering", J. Vac. Sci. Technol. 15 (1978) 179.
[15] J. Affinito, R.R. Parsons, "Mechanisms of voltage-controlled, reactive, planar magnetron sputtering of al in Ar-N2 and Ar-O2 atmospheres", J. Vac. Sci. Technol. A 2 (1984) 1275.
[16] J.A. Venables, G.D.T. Spiller, M. Hanbucken, "Nucleation and growth of thin-films", Rep. Prog. Phys. 47 (1984) 399.
[17] B.A. Movchan, A.V. Demchishin, "Study of the structure and properties of thick vacuum condensates of Ni, Ti, W, Al2O3, and ZrO2", Phys. Met. Metallogr. 28 (1969) 83.
[18] J.A. Thornton, "Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings", J. Vac. Sci. Technol. 11 (1974) 666.
[19] R. Messier, A.P. Giri, R.A. Roy, "Revised structure zone model for thin-film physical structure", J. Vac. Sci. Technol. A 2 (1984) 500.
[20] Y. Pauleau, P.B. Barna, Protective Coatings and Thin Films: Synthesis, Characterization and Applications Kluwer Academic Publisher, Netherlands, 1997.
[21] J. Musil, J. Vlcek, "Magnetron sputtering of hard nanocomposite coatings and their properties", Surf. Coat. Technol. 142 (2001) 557.
[22] S. Veprek, "The search for novel, superhard materials", J. Vac. Sci. Technol. A 17 (1999) 2401.
[23] H. Holleck, "Material selection for hard coatings", J. Vac. Sci. Technol. A 4 (1986) 2661.
[24] H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes Publications, New Jersey, 1996.
[25] J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, "TiNx (0.6 < x < 1.2): Atomic arrangements, electronic structure and recent results on crystal growth and physical properties of epitaxial layers", AIP Conf. Proc. 149 (1986) 95.
[26] J.E. Sundgren, "Structure and properties of TiN coatings", Thin Solid Films 128 (1985) 21.
[27] J.E. Sundgren, H.T.G. Hentzell, "A review of the present state of art in hard coatings grown from the vapor-phase", J. Vac. Sci. Technol. A 4 (1986) 2259.
[28] S.J. Bull, D.S. Rickerby, T. Robertson, A. Hendry, "The abrasive wear-resistance of sputter ion plated titanium nitride coatings", Surf. Coat. Technol. 36 (1988) 743.
[29] P. Hedenqvist, M. Olsson, P. Wallén, Å. Kassman, S. Hogmark, S. Jacobson, "How TiN coatings improve the performance of high speed steel cutting tools", Surf. Coat. Technol. 41 (1990) 243.
[30] T. Kouno, H. Niwa, M. Yamada, "Effect of TiN microstructure on diffusion barrier properties in Cu metallization", J. Electrochem. Soc. 145 (1998) 2164.
[31] A.E. Kaloyeros, E. Eisenbraun, "Ultrathin diffusion barriers/liners for gigascale copper metallization", Annu. Rev. Mater. Sci. 30 (2000) 363.
[32] H. Ichimura, A. Kawana, "High-temperature oxidation of ion-plated TiN and TiAlN films", J. Mater. Res. 8 (1993) 1093.
[33] G. Berg, C. Friedrich, E. Broszeit, C. Berger, "Development of chromium nitride coatings substituting titanium nitride", Surf. Coat. Technol. 86 (1996) 184.
[34] P. Hones, R. Sanjines, F. Levy, "Characterization of sputter-deposited chromium nitride thin films for hard coatings", Surf. Coat. Technol. 94-95 (1997) 398.
[35] L. Cunha, M. Andritschky, K. Pischow, Z. Wang, A. Zarychta, A.S. Miranda, A.M. Cunha, "Performance of chromium nitride based coatings under plastic processing conditions", Surf. Coat. Technol. 133 (2000) 61.
[36] J.A. Sue, T.P. Chang, "Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures", Surf. Coat. Technol. 76-77 (1995) 61.
[37] T. Hurkmans, D.B. Lewis, J.S. Brooks, W.D. Münz, "Chromium nitride coatings grown by unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABS(TM)) deposition techniques", Surf. Coat. Technol. 86-87 (1996) 192.
[38] P.H. Mayrhofer, G. Tischler, C. Mitterer, "Microstructure and mechanical/ thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering", Surf. Coat. Technol. 142-144 (2001) 78.
[39] M.C. Benjamin, C. Wang, R.F. Davis, R.J. Nemanich, "Observation of a negative electron affinity for heteroepitaxial AlN on alpha(6H)-SiC(0001)", Appl. Phys. Lett. 64 (1994) 3288.
[40] M.A. Dubois, P. Muralt, "Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications", Appl. Phys. Lett. 74 (1999) 3032.
[41] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, M. Umeno, "Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor interfaces with low interface state density", Appl. Phys. Lett. 73 (1998) 809.
[42] H.E. Hintermann, "Tribological and protective coatings by chemical vapour deposition", Thin Solid Films 84 (1981) 215.
[43] R. Buhl, H.K. Pulker, E. Moll, "TiN coatings on steel", Thin Solid Films 80 (1981) 265.
[44] S. Veprek, M.J.G. Veprek-Heijman, "Industrial applications of superhard nanocomposite coatings", Surf. Coat. Technol. 202 (2008) 5063.
[45] T. Cselle, A. Barimani, "Today's applications and future developments of coatings for drills and rotating cutting tools", Surf. Coat. Technol. 76-77 (1995) 712.
[46] W.D. Munz, "Titanium aluminum nitride films - A new alternative to TiN coatings", J. Vac. Sci. Technol. A 4 (1986) 2717.
[47] O. Knotek, M. Bohmer, T. Leyendecker, "On structure and properties of sputtered Ti and Al based hard compound films", J. Vac. Sci. Technol. A 4 (1986) 2695.
[48] H.A. Jehn, F. Thiergarten, E. Ebersbach, D. Fabian, "Characterization of PVD (Ti, Cr)Nx hard coatings", Surf. Coat. Technol. 50 (1991) 45.
[49] J. Vetter, H.J. Scholl, O. Knotek, "(TiCr)N coatings deposited by cathodic vacuum arc evaporation", Surf. Coat. Technol. 74-75 (1995) 286.
[50] L.A. Donohue, J. Cawley, J.S. Brooks, "Deposition and characterisation of arc-bond sputter TixZryN coatings from pure metallic and segmented targets", Surf. Coat. Technol. 72 (1995) 128.
[51] I. Grimberg, V.M. Zhitomirsky, R.L. Boxman, S. Goldsmith, B.Z. Weiss, "Multicomponent Ti-Zr-N and Ti-Nb-N coatings deposited by vacuum arc", Surf. Coat. Technol. 108-109 (1998) 154.
[52] H. Hasegawa, A. Kimura, T. Suzuki, "Ti1-xAlxN, Ti1-xZrxN and Ti1-xCrxN films synthesized by the AIP method", Surf. Coat. Technol. 132 (2000) 76.
[53] F.H.W. Löffler, "Systematic approach to improve the performance of PVD coatings for tool applications", Surf. Coat. Technol. 68-69 (1994) 729.
[54] I. Tsutomu, S. Hiroshi, "Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method", Thin Solid Films 195 (1991) 99.
[55] M. Zhou, Y. Makino, M. Nose, K. Nogi, "Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering", Thin Solid Films 339 (1999) 203.
[56] S. Hofmann, H.A. Jehn, "Selective oxidation and chemical state of Al and Ti in (Ti, Al)N coatings", Surf. Interface Anal. 12 (1988) 329.
[57] L.A. Donohue, I.J. Smith, W.D. Munz, I. Petrov, J.E. Greene, "Microstructure and oxidation-resistance of Til-x-y-zAlxCryYzN layers grown by combined steered-arc/unbalanced-magnetron-sputter deposition", Surf. Coat. Technol. 94-95 (1997) 226.
[58] D.B. Lewis, L.A. Donohue, M. Lembke, W.D. Munz, R. Kuzel, V. Valvoda, C.J. Blomfield, "The influence of the yttrium content on the structure and properties of Ti1-x-y-zAlxCryYzN PVD hard coatings", Surf. Coat. Technol. 114 (1999) 187.
[59] L.A. Donohue, D.B. Lewis, W.D. Munz, M.M. Stack, S.B. Lyon, H.W. Wang, D. Rafaja, "The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates", Vacuum 55 (1999) 109.
[60] X. Chu, S.A. Barnett, "Model of superlattice yield stress and hardness enhancements", J. Appl. Phys. 77 (1995) 4403.
[61] P.B. Mirkarimi, L. Hultman, S.A. Barnett, "Enhanced hardness in lattice-matched single-crystal TiN/V0.6Nb0.4N superlattices", Appl. Phys. Lett. 57 (1990) 2654.
[62] M. Shinn, L. Hultman, S.A. Barnett, "Growth, structure, and microhardness of epitaxial TiN/NbN superlattices", J. Mater. Res. 7 (1992) 901.
[63] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, "Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness", J. Appl. Phys. 62 (1987) 481.
[64] M. Shinn, S.A. Barnett, "Effect of superlattice layer elastic-moduli on hardness", Appl. Phys. Lett. 64 (1994) 61.
[65] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.D. Mannling, P. Nesladek, G. Dollinger, A. Bergmaier, "Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV = 80 to ≦105 GPa", Surf. Coat. Technol. 133 (2000) 152.
[66] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, "On the validity of the Hall-Petch relationship in nanocrystalline materials", Scripta Metall. Mater. 23 (1989) 1679.
[67] P. Hammer, A. Steiner, R. Villa, M. Baker, P.N. Gibson, J. Haupt, W. Gissler, "Titanium boron nitride coatings of very high hardness", Surf. Coat. Technol. 68-69 (1994) 194.
[68] L. Shizhi, S. Yulong, P. Hongrui, "Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition", Plasma Chem. Plasma Process. 12 (1992) 287.
[69] S. Veprek, S. Reiprich, "A concept for the design of novel superhard coatings", Thin Solid Films 268 (1995) 64.
[70] J. Patscheider, "Nanocomposite hard coatings for wear protection", MRS Bull. 28 (2003) 180.
[71] S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, "Different approaches to superhard coatings and nanocomposites", Thin Solid Films 476 (2005) 1.
[72] L. Hultman, J. Bareno, A. Flink, H. Soderberg, K. Larsson, V. Petrova, M. Oden, J.E. Greene, I. Petrov, "Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations", Phys. Rev. B 75 (2007).
[73] S. Veprek, P. Karvankova, M.G.J. Veprek-Heijman, "Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites", J. Vac. Sci. Technol. B 23 (2005) L17.
[74] S. Veprek, S. Reiprich, S.H. Li, "Superhard nanocrystalline composite-materials - The TiN/Si3N4 system", Appl. Phys. Lett. 66 (1995) 2640.
[75] M. Diserens, J. Patscheider, F. Levy, "Mechanical properties and oxidation resistance of nanocomposite TiN-SiNx physical-vapor-deposited thin films", Surf. Coat. Technol. 120 (1999) 158.
[76] H.C. Barshilia, B. Deepthi, K.S. Rajam, "Deposition and characterization of TiAlN/Si3N4 superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering", Vacuum 81 (2006) 479.
[77] Y.S. Li, S. Shimada, H. Kiyono, A. Hirose, "Synthesis of Ti-Al-Si-N nanocomposite films using liquid injection PECVD from alkoxide precursors", Acta Mater. 54 (2006) 2041.
[78] M. Jilek, T. Cselle, P. Holubar, M. Morstein, M.G.J. Veprek-Heijman, S. Veprek, "Development of novel coating technology by vacuum arc with rotating cathodes for industrial production of nc-(Al1-xTix)N/a-Si3N4 superhard nanocomposite coatings for dry, hard machining", Plasma Chem. Plasma Process. 24 (2004) 493.
[79] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes", Adv. Eng. Mater. 6 (2004) 299.
[80] J.W. Yeh, "Recent progress in high-entropy alloys", Ann. Chim. Sci. Mat. 31 (2006) 633.
[81] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, "Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements", Metall. Mater. Trans. A - Phys. Metall. Mater. Sci. 36A (2005) 881.
[82] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, "Microstructure and electrochemical properties of high entropy alloys - A comparison with type-304 stainless steel", Corrosion Sci. 47 (2005) 2257.
[83] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, C.P. Tu, "Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys", Mater. Trans. 47 (2006) 1395.
[84] J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, "Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content", Wear 261 (2006) 513.
[85] C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, S.K. Chen, "Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi", J. Alloys Compd. 486 (2009) 427.
[86] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, "Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys", Adv. Eng. Mater. 12 (2010) 44.
[87] S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, "Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys", Mater. Sci. Eng. A 527 (2010) 5818.
[88] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, "Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating", Adv. Eng. Mater. 6 (2004) 74.
[89] Y.F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin, J.W. Yeh, S.J. Lin, T.H. Liou, C.W. Wang, "Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys", Int. J. Hydrogen Energ. 35 (2010) 9046.
[90] T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, "Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering", Surf. Coat. Technol. 188-189 (2004) 193.
[91] T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, "Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering", Surf. Coat. Technol. 200 (2005) 1361.
[92] C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, "Preparation and characterization of AlCrTaTiZr multi-element nitride coatings", Surf. Coat. Technol. 201 (2006) 3275.
[93] C.H. Lai, S.J. Lin, J.W. Yeh, A. Davison, "Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings", J. Phys. D: Appl. Phys. 39 (2006) 4628.
[94] C.H. Lai, M.H. Tsai, S.J. Lin, J.W. Yeh, "Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings", Surf. Coat. Technol. 201 (2007) 6993.
[95] C.H. Lai, K.H. Cheng, S.J. Lin, J.W. Yeh, "Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings", Surf. Coat. Technol. 202 (2008) 3732.
[96] K.H. Cheng, C.H. Weng, C.H. Lai, S.J. Lin, "Study on adhesion and wear resistance of multi-element (AlCrTaTiZr)N coatings", Thin Solid Films 517 (2009) 4989.
[97] C.H. Lin, J.G. Duh, J.W. Yeh, "Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter", Surf. Coat. Technol. 201 (2007) 6304.
[98] C.H. Lin, J.G. Duh, "Corrosion behavior of (Ti-Al-Cr-Si-V)xNy coatings on mild steels derived from RF magnetron sputtering", Surf. Coat. Technol. 203 (2008) 558.
[99] H.W. Chang, P.K. Huang, A. Davison, J.W. Yeh, C.H. Tsau, C.C. Yang, "Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering", Thin Solid Films 516 (2008) 6402.
[100] H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, C.C. Yang, "Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings", Surf. Coat. Technol. 202 (2008) 3360.
[101] P.K. Huang, J.W. Yeh, "Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating", Surf. Coat. Technol. 203 (2009) 1891.
[102] P.K. Huang, J.W. Yeh, "Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings", J. Phys. D: Appl. Phys. 42 (2009).
[103] P.K. Huang, J.W. Yeh, "Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings", Thin Solid Films 518 (2009) 180.
[104] P.K. Huang, J.W. Yeh, "Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings", Scripta Mater. 62 (2010) 105.
[105] K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, "Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering", Thin Solid Films 519 (2011) 3185.
[106] H.G. Jiang, M. Ruhle, E.J. Lavernia, "On the applicability of the X-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials", J. Mater. Res. 14 (1999) 549.
[107] W.C. Oliver, G.M. Pharr, "An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments", J. Mater. Res. 7 (1992) 1564.
[108] G.C.A.M. Janssen, M.M. Abdalla, F. van Keulen, B.R. Pujada, B. van Venrooy, "Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers", Thin Solid Films 517 (2009) 1858.
[109] K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, "A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces", Wear 254 (2003) 278.
[110] S.J. Bull, D.S. Rickerby, A. Jain, "The sliding wear of titanium nitride coatings", Surf. Coat. Technol. 41 (1990) 269.
[111] S.Y. Chang, S.Y. Lin, Y.C. Huang, C.L. Wu, "Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings", Surf. Coat. Technol. 204 (2010) 3307.
[112] Z.G. Li, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, "Structure and properties of Ti-Si-N films deposited by dc magnetron cosputtering on positively biased substrates", Jpn. J. Appl. Phys. 42 (2003) 7510.
[113] C.S. Sandu, M. Benkahoul, R. Sanjines, F. Levy, "Model for the evolution of Nb-Si-N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties", Surf. Coat. Technol. 201 (2006) 2897.
[114] C.T. Lynch, Handbook of Materials Science, CRC Press, Cleveland, 1974.
[115] K.H. Kim, S.R. Choi, S.Y. Yoon, "Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques", Surf. Coat. Technol. 161 (2002) 243.
[116] D. Pilloud, J.F. Pierson, A.P. Marques, A. Cavaleiro, "Structural changes in Zr-Si-N films vs. their silicon content", Surf. Coat. Technol. 180 (2004) 352.
[117] B.H. Park, Y.I. Kim, K.H. Kim, "Effect of silicon addition on microstructure and mechanical property of titanium nitride film prepared by plasma-assisted chemical vapor deposition", Thin Solid Films 348 (1999) 210.
[118] J. Prochazka, P. Karvankova, M.G.J. Veprek-Heijman, S. Veprek, "Conditions required for achieving superhardness of ≧45 GPa in nc-TiN/a-Si3N4 nanocomposites", Mater. Sci. Eng. A 384 (2004) 102.
[119] M. Diserens, J. Patscheider, F. Levy, "Improving the properties of titanium nitride by incorporation of silicon", Surf. Coat. Technol. 108 (1998) 241.
[120] C.S. Sandu, R. Sanjines, M. Benkahoul, F. Medjani, F. Levy, "Formation of composite ternary nitride thin films by magnetron sputtering co-deposition", Surf. Coat. Technol. 201 (2006) 4083.
[121] C.H. Zhang, Z.J. Liu, K.Y. Li, Y.G. Shen, J.B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition", J. Appl. Phys. 95 (2004) 1460.
[122] D. Mercs, P. Briois, V. Demange, S. Lamy, C. Coddet, "Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetron sputtering assisted by RF plasmas", Surf. Coat. Technol. 201 (2007) 6970.
[123] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc., Minnesota, 1995.
[124] M. Nose, M. Zhou, T. Nagae, T. Mae, M. Yokota, S. Saji, "Properties of Zr-Si-N coatings prepared by RF reactive sputtering", Surf. Coat. Technol. 132 (2000) 163.
[125] S.H. Kim, J.K. Kim, K.H. Kim, "Influence of deposition conditions on the microstructure and mechanical properties of Ti-Si-N films by DC reactive magnetron sputtering", Thin Solid Films 420 (2002) 360.
[126] I. Bertoti, "Characterization of nitride coatings by XPS", Surf. Coat. Technol. 151 (2002) 194.
[127] P. Lamour, P. Fioux, A. Ponche, M. Nardin, M.F. Vallat, P. Dugay, J.P. Brun, N. Moreaud, J.M. Pinvidic, "Direct measurement of the nitrogen content by XPS in self-passivated TaNx thin films", Surf. Interface Anal. 40 (2008) 1430.
[128] M.H. Tsai, C.H. Lai, J.W. Yeh, J.Y. Gan, "Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings", J. Phys. D: Appl. Phys. 41 (2008).
[129] J.H. Huang, Y.P. Tsai, G.P. Yu, "Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating", Thin Solid Films 355-356 (1999) 440.
[130] H. Wang, A. Sharma, A. Kvit, Q. Wei, X. Zhang, C.C. Koch, J. Narayan, "Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon", J. Mater. Res. 16 (2001) 2733.
[131] J. Patscheider, T. Zehnder, M. Diserens, "Structure-performance relations in nanocomposite coatings", Surf. Coat. Technol. 146 (2001) 201.
[132] C.S. Sandu, F. Medjani, R. Sanjines, A. Karimi, F. Levy, "Structure, morphology and electrical properties of sputtered Zr-Si-N thin films: From solid solution to nanocomposite", Surf. Coat. Technol. 201 (2006) 4219.
[133] A. Leyland, A. Matthews, "On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour", Wear 246 (2000) 1.
[134] J. Musil, F. Kunc, H. Zeman, H. Polakova, "Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings", Surf. Coat. Technol. 154 (2002) 304.
[135] S. Veprek, "New development in superhard coatings: The superhard nanocrystalline-amorphous composites", Thin Solid Films 317 (1998) 449.
[136] A. Niederhofer, T. Bolom, P. Nesladek, K. Moto, C. Eggs, D.S. Patil, S. Veprek, "The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites", Surf. Coat. Technol. 146 (2001) 183.
[137] S. Wilson, A.T. Alpas, "Tribo-layer formation during sliding Wear of TiN coatings", Wear 245 (2000) 223.
[138] T. Polcar, T. Kubart, R. Novak, L. Kopecky, P. Siroky, "Comparison of tribological behaviour of TiN, TiCN and CrN at elevated temperatures", Surf. Coat. Technol. 193 (2005) 192.
[139] S. Wilson, A.T. Alpas, "Dry sliding wear of a PVD TiN coating against Si3N4 at elevated temperatures", Surf. Coat. Technol. 86 (1996) 75.
[140] X.Z. Zhao, J.J. Liu, T.E. Fischer, "Effects of lubricant rheology and additive chemistry in the wear of Si3N4 sliding on steel", Wear 223 (1998) 37.
[141] A. Matthews, A. Leyland, K. Holmberg, H. Ronkainen, "Design aspects for advanced tribological surface coatings", Surf. Coat. Technol. 100 (1998) 1.
[142] S. Hogmark, S. Jacobson, M. Larsson, "Design and evaluation of tribological coatings", Wear 246 (2000) 20.
[143] H.A. Jehn, "Multicomponent and multiphase hard coatings for tribological applications", Surf. Coat. Technol. 131 (2000) 433.
[144] T.E. Fischer, H. Tomizawa, "Interaction of tribochemistry and microfracture in the friction and wear of silicon-nitride", Wear 105 (1985) 29.
[145] O.N. Park, J.H. Park, S.Y. Yoon, M.H. Lee, K.H. Kim, "Tribological behavior of Ti-Si-N coating layers prepared by a hybrid system of arc ion plating and sputtering techniques", Surf. Coat. Technol. 179 (2004) 83.
[146] J. Takadoum, H. Houmid-Bennani, D. Mairey, "The wear characteristics of silicon nitride", J. Eur. Ceram. Soc. 18 (1998) 553.
[147] S.H. Kim, J.W. Jang, S.S. Kang, K.H. Kim, "Synthesis and mechanical evaluation of nanocomposite coating layer of nc-TiN/a-Si3N4 on SKD11 steel by sputtering", J. Mater. Process. Technol. 130 (2002) 283.
[148] D. Pilloud, J.F. Pierson, J. Takadoum, "Structure and tribological properties of reactively sputtered Zr-Si-N films", Thin Solid Films 496 (2006) 445.
[149] K. Holmberg, "A concept for friction mechanisms of coated surfaces", Surf. Coat. Technol. 56 (1992) 1.
[150] J.L. Mo, M.H. Zhu, "Tribological oxidation behaviour of PVD hard coatings", Tribol. Int. 42 (2009) 1758.
[151] Y.H. Cheng, T. Browne, B. Heckerman, E.I. Meletis, "Mechanical and tribological properties of nanocomposite TiSiN coatings", Surf. Coat. Technol. 204 (2010) 2123.
[152] D.B. Lee, M.H. Kim, Y.C. Lee, S.C. Kwon, "High temperature oxidation of TiCrN coatings deposited on a steel substrate by ion plating", Surf. Coat. Technol. 141 (2001) 232.
[153] C.W. Kim, K.H. Kim, "Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al", Thin Solid Films 307 (1997) 113.
[154] I. Milosev, H.H. Strehblow, B. Navinsek, "XPS in the study of high-temperature oxidation of CrN and TiN hard coatings", Surf. Coat. Technol. 74-75 (1995) 897.
[155] B. Navinsek, P. Panjan, A. Cvelbar, "Characterization of low temperature CrN and TiN (PVD) hard coatings", Surf. Coat. Technol. 74-75 (1995) 155.
[156] Y. Otani, S. Hofmann, "High temperature oxidation behaviour of (Ti1-xCrx)N coatings", Thin Solid Films 287 (1996) 188.
[157] A. Joshi, H.S. Hu, "Oxidation behavior of titanium-aluminium nitrides", Surf. Coat. Technol. 76-77 (1995) 499.
[158] F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, "Oxidation resistance of (Ti,Al,Si)N coatings in air", Surf. Coat. Technol. 98 (1998) 912.
[159] H.C. Barshilia, B. Deepthi, A.S.A. Prabhu, K.S. Rajam, "Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering", Surf. Coat. Technol. 201 (2006) 329.
[160] K.H. Kim, B.H. Park, "Mechanical properties and oxidation behavior of Ti-Si-N films prepared by plasma-assisted CVD", Chem. Vap. Deposition 5 (1999) 275.
[161] C.H. Zhang, X.C. Lu, H. Wang, J.B. Luo, Y.G. Shen, K.Y. Li, "Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti-Si-N coatings", Appl. Surf. Sci. 252 (2006) 6141.
[162] G. Llauro, F. Gourbilleau, F. Sibieude, R. Hillel, "Oxidation behavior of CVD TiN-Ti5Si3 composite coatings", Thin Solid Films 315 (1998) 336.
[163] P. Steyer, D. Pilloud, J.F. Pierson, J.P. Millet, M. Charnay, B. Stauder, P. Jacquot, "Oxidation resistance improvement of arc-evaporated TiN hard coatings by silicon addition", Surf. Coat. Technol. 201 (2006) 4158.
[164] D. Pilloud, J.F. Pierson, M.C.M. de Lucas, A. Cavaleiro, "Study of the structural changes induced by air oxidation in Ti-Si-N hard coatings", Surf. Coat. Technol. 202 (2008) 2413.
[165] M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer, M. Kathrein, "Improved oxidation resistance of TiAlN coatings by doping with Si or B", Surf. Coat. Technol. 203 (2009) 3104.
[166] D. Pilloud, J.F. Pierson, M.C.M. de Lucas, M. Alnot, "Stabilisation of tetragonal zirconia in oxidised Zr-Si-N nanocomposite coatings", Appl. Surf. Sci. 229 (2004) 132.
[167] L. Rebouta, F. Vaz, M. Andritschky, M.F. daSilva, "Oxidation resistance of (Ti,Al,Zr,Si)N coatings in air", Surf. Coat. Technol. 76 (1995) 70.
[168] P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, I. Milosev, "Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature", Thin Solid Films 282 (1996) 298.
[169] T.D. Nguyen, Y.J. Kim, J.G. Han, D.B. Lee, "Oxidation of TiZrAlN nanocomposite thin films in air at temperatures between 500 and 700 °C ", Thin Solid Films 517 (2009) 5216.
[170] N. Birks, G.H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, 1983.
[171] M. Wittmer, J. Noser, H. Melchior, "Oxidation-kinetics of TiN thin-films", J. Appl. Phys. 52 (1981) 6659.
[172] L. Krusinelbaum, M. Wittmer, "Oxidation-kinetics of ZrN thin-films", Thin Solid Films 107 (1983) 111.
[173] D. McIntyre, J.E. Greene, G. Hakansson, J.E. Sundgren, W.D. Munz, "Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films - Kinetics and mechanisms", J. Appl. Phys. 67 (1990) 1542.
[174] A. Vennemann, H.R. Stock, J. Kohlscheen, S. Rambadt, G. Erkens, "Oxidation resistance of titanium-aluminium-silicon nitride coatings", Surf. Coat. Technol. 174 (2003) 408.
[175] S. Hofmann, "Formation and diffusion properties of oxide-films on metals and on nitride coatings studied with auger-electron spectroscopy and X-ray photoelectron-spectroscopy", Thin Solid Films 193 (1990) 648.
[176] J.B. Choi, K. Cho, M.H. Lee, K.H. Kim, "Effects of Si content and free Si on oxidation behavior of Ti-Si-N coating layers", Thin Solid Films 447 (2004) 365.
[177] T.R. Lin, R.F. Shyu, "Improvement of tool life and exit burr using variable feeds when drilling stainless steel with coated drills", Int. J. Adv. Manuf. Technol. 16 (2000) 308.
[178] P. Koshy, R.C. Dewes, D.K. Aspinwall, "High speed end milling of hardened AISI D2 tool steel (~58 HRC)", J. Mater. Process. Technol. 127 (2002) 266.
[179] L. Ning, S.C. Veldhuis, K. Yamamoto, "Investigation of nano-structured PVD coatings for dry high-speed machining", Mach. Sci. Technol. 11 (2007) 45
[180] ASM Handbook Volume 16: Machining, ASM International, 1989.
[181] Y.C. Yen, J. Söhner, B. Lilly, T. Altan, "Estimation of tool wear in orthogonal cutting using the finite element analysis", J. Mater. Process. Technol. 146 (2004) 82.