研究生: |
葉子語 Yeh, Tzu-Yu |
---|---|
論文名稱: |
高色散容忍光學雙二進制四階脈衝振幅調變系統於資料中心之應用 An Optical Duobinary PAM4 with High Dispersion Tolerance for Data Center Communication |
指導教授: |
馮開明
Feng, Kai-Ming |
口試委員: |
邱奕鵬
Chiou, Yih-Peng 彭朋群 Peng, Peng-Chun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 四階脈衝振幅調變 、資料中心 、雙二進制 、色散 |
外文關鍵詞: | PAM4, Duobinary, Data Center, Dispersion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球資料量將急速攀升,對於資料中心的容量需求也隨之增加,因此低成本、高容載量的光通訊系統被應用在資料中心內部以及資料中心之間傳輸,傳輸距離從數百公尺到數十公里不等。相較於二進制訊號,四階脈衝振幅調變(PAM4)訊號能夠提升一倍的傳輸速率,且具有較好的頻譜效益。
本論文的研究目的主要為增加四階脈衝振幅調變訊號在資料中心的傳輸距離,為此我們提出了兩個方法,其一是在四階脈衝振幅調變系統中加入決策迴授等化器(DFE),其二使用雙二進制的四階脈衝振幅調變(Duobinary PAM4)作為傳輸訊號格式,達到頻寬減半的效果。我們透過實驗證明四階脈衝振幅調變訊號使用決策迴授等化器之後系統架構的可行性。另外也使用雙二進制的四階脈衝振幅調變系統,在不加入任何補償的情況下,相較於傳統的四階脈衝振幅調變,雙二進制的四階脈衝振幅調變系統有較好的色散容忍力,相對的接收也需要較高的訊號雜訊比(Signal-to-Noise Ratio),因此本論文也針對傳統的四階脈衝振幅調變及雙二進制的四階脈衝振幅調變系統對於訊號雜訊比的需求進行討論。
As the increase of the growing demand of information, it requires huge data capacity in data centers. Optical network systems with lower cost and higher capacity is used to support intra and inter data center connections. The distance is in the range from hundred meters to kilometers. Relative to binary signal, 4-ary pulse amplitude modulation (PAM4) can double the data rate and offers higher spectral efficiency.
The main purpose of this study is to increase the transmission distance of PAM4 signals in and among data centers. One method is to achieve the distance is applying Decision Feedback Equalizer (DFE) in the receiver of an optical PAM4 system, and the other method is to employ an optical duobinary PAM4 signal format which half-reduces communication bandwidth. We experimentally demonstrate a 50 Gb/s PAM4 system with a 2-tap Decision Feedback Equalizer (DFE) and hard decision. The BER performance are evaluated with different transmission scenarios without and with DFE respectively. A 10-km single mode fiber (SMF) transmission is achieved by using DFE. In addition, we experimentally evaluate the chromatic dispersion tolerance of a duobinary PAM4 signal for data center communication. In comparison of ordinary PAM4, the duobinary PAM4 has higher dispersion tolerance without any physical or digital compensation, but it requires more receiving SNR. We also discuss the SNR requirement of duobinary PAM4 in comparison with ordinary PAM4.
References
[1] D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, "Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications," in 2015 Optical Fiber Communications Conference and Exhibition (OFC), 2015, paper Th2A.67.
[2] C. Kachris, K. Bergman, and I. Tomkos, "Optical Interconnects for Future Data Center Networks," pp. 9-12.
[3] F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Poti, and E. Forestieri, "Short-Reach Distance Extension through CAPS Coding and DSP-free Direct Detection Receiver," in ECOC 2016; 42nd European Conference on Optical Communication, 2016.
[4] C. Chen, T. Xuefeng, and Z. Zhuhong, "Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation," in 2015 Optical Fiber Communications Conference and Exhibition (OFC), 2015, paper Th4A.5.
[5] D. Marcuse, "Interdependence of Waveguide and Material Dispersion," Applied Optics, vol. 18, pp. 2930-2932, 1979.
[6] C. R. P. a. M. Lipson, "Integrated Photonics," pp. 73-97, 2003.
[7] Y. Kokubun and K. Iga, "Single-mode condition of optical fibers with axially symmetric refractive index distribution," Radio Science, vol. 17, pp. 43-49, 1982.
[8] B. E. A. Saleh and M. C. Teich, "Fundamental of Photonics," pp. 150-195, 2007.
[9] S. U. H. Qureshi, "Adaptive equalization," Proceedings of the IEEE, vol. 73, pp. 1349-1387, 1985.
[10] S. Yin, D. v. Veen, V. Houtsma, and P. Vetter, "Investigation of symmetrical optical amplified 40 Gbps PAM-4/duobinary TDM-PON using 10G optics and DSP," in 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016, paper Tu3C.2.
[11] A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, "Solutions for 80 km DWDM Systems," Journal of Lightwave Technology, vol. 34, pp. 491-499, 2016.
[12] M. Safak, "Digital Communications," pp. 278-282, January 2017.
[13] L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, "Direct modulation of 56 Gbps duobinary-4-PAM," in 2015 Optical Fiber Communications Conference and Exhibition (OFC), 2015, paper Th1E.7.
[14] E. Z. Xiaogeng Xu, Gordon Ning Liu, Tianjian Zuo, Qiwen Zhong, Liang and Y. B. Zhang, Xuebing Zhang, Jianping Li and Zhaohui Li, "Advanced modulation formats for 400-Gbps short-reach optical inter-connection," OPTICS EXPRESS, vol. 23, pp. 492-500, 12 Jan 2015.
[15] B. E. A. S. a. M. C. Teich, "Fundamentals of Photonics," pp. 834-871, 2007.
[16] Wikipedia. (2017). Pockels effect https://en.wikipedia.org/wiki/Pockels_effect.
[17] Anritsu. Understanding Eye Pattern Measurements https://dl.cdn-anritsu.com/en-us/test-measurement/files/Application-Notes/Application-Note/11410-00533.pdf.
[18] S. D. Personick, "Receiver design for digital fiber optic communication systems," vol. 52, pp. 843-874, July-Aug, 1973.
[19] Anritsu. High-Speed PAM Signal Generation and BER Measurements https://dl.cdn-anritsu.com/en-en/test-measurement/files/Application-Notes/Application-Note/mp1800a-pam-ber-ef1300.pdf.
[20] N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. Eiselt, J. P. Elbers, et al., "First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm," presented at the 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016, paper W1K.5.