簡易檢索 / 詳目顯示

研究生: 王子宇
Wang, Zi-Yu
論文名稱: 發展用於量測機械損耗的溫和節點懸掛系統
Developing a Gentle Nodal Suspension system for measuring mechanical loss.
指導教授: 趙煦
Chao, Shiuh
井上優貴
Inoue, Yuki
口試委員: 王子敬
Wong, Tsz-King
章文箴
Chang, Wen-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 78
中文關鍵詞: 溫和節點懸掛機械損耗
外文關鍵詞: GNS, mechanicalloss
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LIGO(Laser Interferometer Gravitational-Wave Observatory)是一個專門設計用來探測引力波的天文設施,而LIGO Voyager是其下一代升級版本,其中一個主要目標是發展低溫技術以減少背景熱雜訊。干涉儀內部的高反射鏡用來傳輸光束,其薄膜的性能顯著影響LIGO的靈敏度和精度。本實驗室目前正致力於研究SiN及SiON薄膜,通過調整薄膜內部鍵結比例,發展具有低吸收率和低機械損耗的薄膜。此外,LPCVD方法被認為能產生性能更佳的薄膜,將成為未來薄膜研究的主要方向。在量測方面,我們正在開發一套新的機械損耗量測系統-GNS (Gentle Nodal Suspension)。與懸臂夾持系統相比,GNS的設計大幅減少了夾持面積,並簡化了樣品製作過程,從而可以減少額外的損耗並提升量測精確度。GNS發展初期遇到了致動器無法順利震動晶圓的困境,我將闡述我們通過哪些方法改進了系統並成功量測Ringdown訊號,以及系統目前的進展和未來的規劃。


    LIGO (Laser Interferometer Gravitational-Wave Observatory) is an astronomical facility specifically designed to detect gravitational waves, and LIGO Voyager is its next-generation upgrade. One of its main goals is to develop cryogenic technologies to reduce background thermal noise. The high-reflectivity mirrors inside the interferometer are used to transmit light beams, and the performance of their coatings significantly affects the sensitivity and accuracy of LIGO.
    Our laboratory is currently focused on researching SiN and SiON thin films. By adjusting the bonding ratio within the films, we aim to develop films with low absorption rates and low mechanical losses. Additionally, the LPCVD method is believed to produce films with better performance, making it the primary direction for future film research.
    In terms of measurement, we are developing a new mechanical loss measurement system—GNS (Gentle Nodal Suspension). Compared to the cantilever clamping system, the GNS design significantly reduces the clamping area and simplifies the sample fabrication process, thereby reducing additional losses and improving measurement accuracy.
    During the early development of GNS, we encountered difficulties with the actuator not being able to successfully vibrate the wafer. I will explain the methods we used to improve the system and successfully measure the ringdown signal, as well as the current progress and future goals of the system.

    Abstract I 摘要 II Acknowledgments III List of Figures IV List of Tables V Chapter1 Introduction 1 Chapter 2 Development of the coatings for highly reflectors 4 2-1 Observation of gravitational waves 4 2-2 Development of coating materials 8 2-3 Result of coating materials 10 Chapter 3 Deposition equipment and measuring tools 15 3-1 Deposition equipment 15 3-2 Photothermal Common-path Interferometry 16 3-3 Cryogenic system 18 3-4 Basic principles and system structure for measuring mechanical loss 19 3-5 Motivation and goals of GNS development 23 Chapter 4 Development of Gentle Nodal Suspension system 25 4-1 Introduction 25 4-2 Sample uniformity and resonance frequency simulation 26 4-3 First-generation GNS system setup 27 4-4 Second-generation GNS system setup 30 4-5 Results and discussion 35 Chapter 5 Upgrade of Gentle Nodule Suspension system 36 5-1 Improve actuator 36 5-2 Optical path design of interferometer 37 5-3 Measurement optimization 38 5-4 Mitigating environmental noise 43 5-5 Excitation test 44 5-6 Simulation error analysis and calibration 46 5-7 Measurement and analysis of ringdown curve 48 Chapter 6 Discussion 55 6-1 How to further improve GNS 55 6-2 Simulation of substrate thickness reduction 56 6-3 Cross check Young’s modulus with Nanoindenter 58 6-4 Discussion of other GNS in the world 59 6-5 Verify the material properties 60 6-6 Cryogenic update 61 Chapter 7 Conclusion& Future Work 66 7-1 Conclusion 66 7-1 Future work 67 Reference 68 Appendix 71

    [1] R. A. Hulse, J. H. Taylor, Discovery of a pulsar in a binary system, The Astrophysical Journal 195, L51(1975)
    [2] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, PRL, 116, 061102 (2016).
    [3] LIGO Voyager Upgrade: Design Concept (LIGO-T1400226-v10).
    [4] Instrument Science White Paper 2022-2023 (LIGO-T2200384–v2).
    [5] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40 (1951).
    [6] H. B. Callen, R. F. Greene, On a theorem of irreversible thermodynamics., Phys. Rev. 86,702-710 (1952).
    [7] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., 83: 1231-1235 (1951).
    [8] Master thesis, Chien-Yu Lin, Institute of Photonics Technologies, National Tsing Hua University, 2023.
    [9] K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
    [10] ET Science Team, “Einstein gravitational wave telescope conceptual design study: ET-0106C-10” (European gravitational observatory, Cascina Italy, 2011) https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf
    [11] R. Adhikari et al., “LIGO III Blue Concept LIGO”, LIGO Report No. LIGO-G1200573, http://dcc.ligo.org/LIGO-G1200573-v1/public (2012).
    [12] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
    [13] I. W. Martin et al., “Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav”, 31, 035019 (2014).
    [14] https://dcc.ligo.org
    [15] Master thesis, Zhen-Li Huang, Institute of Photonics Technologies, National Tsing Hua University, 2019.
    [16] Master thesis, Oian-Yi Hong, Institute of Photonics Technologies, National Tsing Hua University, 2022.
    [17] Master thesis, I-Peng Chang, Institute of Photonics Technologies, National Tsing Hua University, 2022.
    [18] Xiao Liu et al., “Elastic Properties of Several Silicon Nitride Films”, Mater. Res. Soc. Symp. Proc. Vol. 989 © 2007 Materials Research Society
    [19] https://reurl.cc/eDKX3K
    [20] https://reurl.cc/GA2exy
    [21] Master thesis, Nai-Chung Kang, Institute of Photonics Technologies, National Tsing Hua University, 2019.
    [22] Master thesis, Zheng Jyun, Institute of Photonics Technologies, National Tsing Hua University, 2016.
    [23] S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 5: 109-121 (2003).
    [24] T. Makino and M. Maeda, Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture, Jpn. J. Appl. Phys. 25, 1300 (1986).
    [25] T. Makino, Journal of the Electrochemistry Society 130 450-5 (1983)
    [26] H. Shanks, et al. Infrared Spectrum and Structure of Hydrogenated Amorphous
    [27] Master thesis, Dong-Lin Tsai, Institute of Photonics Technologies, National Tsing Hua University, 2021.
    [28] Master thesis, Yin-Chieh Yang, Institute of Photonics Technologies, National Tsing Hua University, 2022.
    [29] Master thesis, Tsai-Ling Lo, Institute of Photonics Technologies, National Tsing Hua University, 2022.
    [30] 森有紀乃. 富山大学理工学教育学部物理学専攻 レーザー物理学研究室. 低温重力波望遠鏡 KAGRA のための鏡の反射膜の機械的散逸測定. 修士論文,2021
    [31]https://www.hamamatsu.com/us/en/product/optical-sensors/photodiodes/si-photodiode array/segmented-type-si-photodiode/S5981.html
    [32] 沼田健司. 鏡材料の機械損失に関する研究. Diss. 修士論文, 2000.
    [33] Gupta, Shefali, et al. "Optimizing the performance of MEMS electrostatic comb drive actuator with different flexure springs." Proceedings of the 2012 COMSOL conference. Bangalore. 2012.
    [34] Master thesis, Chun-Huan Wang, Institute of Photonics Technologies, National Tsing Hua University, 2024.
    [35] Master thesis, Hsiang-Chieh Hsu, Study of the cryogenic system and active vibration isolation system for gravitational wave detection.
    [36] Crooks, David R.M. (2002) Mechanical loss and its significance in the test mass mirrors of gravitational wave detectors. PhD thesis.
    [37]https://www.tsri.org.tw/tw/infoopen/latestnews_detail.jsp?newsId=2021041602
    [38] Coating mechanical loss measurement at Toyama (LIGO-G2301679-v2)

    QR CODE