簡易檢索 / 詳目顯示

研究生: 葉育銘
Yeh, Yu-Ming
論文名稱: 微型核糖核酸138與708於卵巢癌轉移之功能角色及臨床關聯性
Functional Role and Clinical Relevance of MicroRNA 138 and 708 in Ovarian Cancer Metastasis
指導教授: 王陸海
Wang, Lu-Hai
口試委員: 吳國瑞
Wu, Kou-Juey
莊雙恩
Chuang, Shuang-En
夏興國
Shiah, Shine-Gwo
周裕珽
Chou, Yu-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 99
中文關鍵詞: 卵巢癌癌症轉移侵入性微型核糖核酸
外文關鍵詞: ovarian cancer, metastasis, invasion, microRNA
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌細胞轉移是影響卵巢癌患者生存的關鍵因素,然而目前對於卵巢癌轉移的分子作用機制仍不清楚。本研究比較同源性之高低侵入性卵巢癌細胞株,發現微型核糖核酸-138及708在高侵入性細胞中,均呈現表現量下降的現象,此二者微型核糖核酸均能夠抑制癌細胞的侵入能力。利用異種原位癌症模型,我們證實微型核糖核酸-138具有抑制小鼠卵巢癌轉移至其它器官的功能。此外,SOX4及HIF-1α是微型核糖核酸-138的直接目標基因,且微型核糖核酸-138所抑制的卵巢癌細胞侵入現象,能為SOX4及HIF-1α的大量表現而回復。尋找下游訊息傳遞路徑的過程中,發現SOX4能夠直接影響轉錄EGFR;而 HIF-1α 則透過蛋白質降解的路徑來調控Slug。於臨床檢體分析方面,發現卵巢癌晚期之臨床檢體呈現微型核糖核酸-138表現量低;SOX4表現量高的現象。 檢體具有微型核糖核酸-138低表現且SOX4高表現型態的患者,則與大量腹水累積和癌細胞淋巴結轉移等惡性腫瘤臨床現象呈現高度相關性。另一具有抑制卵巢癌細胞侵入能力的微型核糖核酸-708,研究證實它能直接調控Rap1B的表現量。而糖皮質激素受體-α可能是轉錄微型核糖核酸-708表現的重要調控因子,由細胞實驗中亦可證實dexamethasone具有刺激微型核糖核酸-708表現,進而抑制卵巢癌細胞侵入能力的作用。從臨床檢體的分析中,發現與正常組織相較之下,卵巢癌檢體呈現微型核酸核酸708低表達;Rap1B高表達的趨勢,印證體外細胞實驗的結果。總括,本研究探討微型核糖核酸-138及708於卵巢癌轉移的功能角色及臨床關聯性,藉此提供具有應用潛力的分子診斷生物標記分子及未來治療卵巢癌轉移的方針。


    Metastasis is the major factor affecting patient survival in ovarian cancer. However, its molecular mechanisms remain unclear. The present study used isogenic pairs of low and high invasive ovarian cancer cell lines to demonstrate the downregulation of miRNA-138 and miRNA-708 in the highly invasive cells, and their functioning as an inhibitor of cell migration and invasion. An orthotopic xenograft mouse model further demonstrated that the expression of miRNA-138 inhibited ovarian cancer metastasis to other organs. Results indicated that miRNA-138 directly targeted SOX4 and HIF-1α, and overexpression of SOX4 and HIF-1α effectively reversed the miRNA-138-mediated suppression of cell invasion. Epidermal growth factor receptor (EGFR) acted as the downstream molecule of SOX4 by way of direct transcriptional control, whereas Slug was the downstream molecule of HIF-1α by way of proteasome-mediated degradation. Analysis of human ovarian tumors further revealed downregulation of miRNA-138 and upregulation of SOX4 in late stage tumors. Patients with miRNA-138low/ SOX4high signature are predominant in late stage and tend to have malignant phenotypes including lymph nodes metastasis, larger ascites volume and higher tumor grade. For miR-708, we found it suppressed ovarian cancer cells invasion and directly targets Rap1B. Glucorcoticoid receptor-alpha, a transcriptional factor activated by dexamethasone, might be the upstream regulator of miRNA-708. Our cell-based study revealed a novel role of miRNA-708 in the inhibition of ovarian cancer cell invasion by dexamethasone. Clinically, expression of miRNA-708 was downregulated while that of Rap1B was upregulated in malignant human ovarian cancers compared to normal tissues. This study demonstrates the functional role and clinical relevance of miRNA-138 and miRNA-708 in ovarian cancer cell invasion and metastasis, providing a potential therapeutic strategy and diagnosis markers for ovarian cancer.

    Abstract 1 摘要 3 誌謝 4 Table of contents 6 List of figures 9 List of tables 11 Chapter 1: Introduction and literature review 12 1.1 Clinical overview of ovarian cancer metastasis 12 1.2 Current knowledge about the molecular mechanisms of ovarian cancer metastasis 13 1.3 MicroRNAs 14 1.4 Specific aim and impact of this study 15 Chapter 2: Methodology 17 2.1 Stragety and rationale 17 2.2 Cell culture 17 2.3 Human ovarian tumor samples 17 2.4 Cell adhesion assay 18 2.5 Paclitaxel resistance assay 18 2.6 Soft agar colony formation assay 18 2.7 Cell migration, invasion assay and in vitro selection 19 2.8 Tail vein metastasis assay and in vivo metastasis selection 20 2.9 Plasmid constructs 20 2.10 Transfection and stable cell line selection 20 2.11 Orthotopic xenograft mouse model 21 2.12 Quantitative real-time PCR for genes and microRNAs 22 2.13 Western blot analysis 22 2.14 3’ UTR luciferase reporter assay 23 2.15 Chromatin immunoprecipitation (ChIP) assay 23 2.16 Fluorescence in situ hybridization, immunofluorescence, and quantification 24 2.17 Statistical analysis 24 2.18 Cell identification 25 Chapter 3: Results 26 3.1 The in vitro-selected invasion ovarian cancer cells exhibit an aggressive cancer cell phenotype 26 3.2 MicroRNA-138 is downregulated in invasive cells and is a negative regulator of ovarian cancer cell invasion and metastasis 27 3.3 MicroRNA-138 suppressed ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1α 28 3.4 Epithelial growth factor receptor and Slug are the downstream mediators of SOX4 and HIF-1α respectively 30 3.5 MicroRNA-138low / SOX4 high signature is a potential prognosis marker for ovarian cancer 32 3.6 MicroRNA-708, downregulated in highly invasive ovarian cancer cells, suppresses cancer cell migration, invasion, and Rap1B expression 33 3.7 Dexamethasone, a glucocorticoid receptor-α agonist, induces miR-708 expression in ovarian cancer cells 34 3.8 MicroRNA-708 is downregulated, and Rap1B is upregulated in malignant human ovarian cancer samples 36 Chapter 4: Discussion and future perspective 38 4.1 Potential upstream regulator of miRNA-138 38 4.2 Role of SOX4 in ovarian cancer 38 4.3 Hypoxia, EMT, and ovarian cancer metastasis 39 4.4 Interaction between SOX4 and HIF-1α 41 4.5 Upstream regulator network of miRNA-708 41 4.6 Role of Dex in cancer treatment 42 4.7 Conclusion and future perspective 43 Reference 46 Tables 51 Figures 62

    1. Clarke-Pearson DL. Clinical practice. Screening for ovarian cancer. The New England journal of medicine 2009;361:170-7.
    2. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature reviews. Cancer 2005;5:355-66.
    3. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ. Cancer statistics, 2004. CA: a cancer journal for clinicians 2004;54:8-29.
    4. Lengyel E. Ovarian cancer development and metastasis. The American journal of pathology 2010;177:1053-64.
    5. Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T, Konishi I. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. The American journal of pathology 2003;163:1437-47.
    6. Veatch AL, Carson LF, Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. International journal of cancer. Journal international du cancer 1994;58:393-9.
    7. Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 2005;103:1631-43.
    8. Strobel T, Cannistra SA. Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecologic oncology 1999;73:362-7.
    9. Slack-Davis JK, Atkins KA, Harrer C, Hershey ED, Conaway M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer research 2009;69:1469-76.
    10. Wang L, Wang J. MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene 2012;31:2499-511.
    11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
    12. Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG. The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia 2009;11:1208-15.
    13. Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY. Frequent downregulation of miR-34 family in human ovarian cancers. Clinical cancer research : an official journal of the American Association for Cancer Research 2010;16:1119-28.
    14. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer letters 2009;286:217-22.
    15. Yip L, Kelly L, Shuai Y, J. AM, E. NY, E. CS, N. NM. MicroRNA signature distinguished the degree of aggressiveness of papillary thryoid carcinoma. Ann Surg Oncol. 2011;18:7.
    16. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, Gemma A, Kudoh S, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proceedings of the National Academy of Sciences of the United States of America 2009;106:12085-90.
    17. Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhou X. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. The Biochemical journal 2011;440:23-31.
    18. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer research 2007;67:1979-87.
    19. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America 1995;92:5510-4.
    20. Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, Wan XX, He QY, Li JH, Qu JQ, Chen Y, Xiao ZQ. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. Journal of cellular biochemistry 2011;112:2508-17.
    21. Jin W, Chen BB, Li JY, Zhu H, Huang M, Gu SM, Wang QQ, Chen JY, Yu S, Wu J, Shao ZM. TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway. Molecular and cellular biology 2012;32:50-63.
    22. Arora P, Cuevas BD, Russo A, Johnson GL, Trejo J. Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene 2008;27:4434-45.
    23. Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL, Horng JT, Hsiao M, Tsou AP. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 2008;27:5578-89.
    24. Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS. Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer research 2009;69:709-17.
    25. Penzo-Mendez AI. Critical roles for SoxC transcription factors in development and cancer. The international journal of biochemistry & cell biology 2010;42:425-8.
    26. Huang CH, Yang WH, Chang SY, Tai SK, Tzeng CH, Kao JY, Wu KJ, Yang MH. Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 2009;11:1371-82.
    27. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature cell biology 2008;10:295-305.
    28. Gallo D, Ferlini C, Scambia G. The epithelial-mesenchymal transition and the estrogen-signaling in ovarian cancer. Current drug targets 2010;11:474-81.
    29. Lassus H, Sihto H, Leminen A, Joensuu H, Isola J, Nupponen NN, Butzow R. Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma. J Mol Med (Berl) 2006;84:671-81.
    30. Brustmann H. Epidermal growth factor receptor expression in serous ovarian carcinoma: an immunohistochemical study with galectin-3 and cyclin D1 and outcome. International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists 2008;27:380-9.
    31. Baranwal S, Alahari SK. Rho GTPase effector functions in tumor cell invasion and metastasis. Current drug targets 2011;12:1194-201.
    32. Tran T, Shatnawi A, Zheng X, Kelley KM, Ratnam M. Enhancement of folate receptor alpha expression in tumor cells through the glucocorticoid receptor: a promising means to improved tumor detection and targeting. Cancer research 2005;65:4431-41.
    33. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, Kotani K, Oikawa H, Sakurai E, Izutsu N, Kato K, Komatsu H, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer science 2008;99:280-6.
    34. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, Shi F, Zhou X. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. International journal of cancer. Journal international du cancer 2010;127:8.
    35. Zhao X, Yang L, Hu J, Ruan J. miR-138 might reverse multidrug resistance of leukemia cells. Leukemia research 2010;34:1078-82.
    36. Wang Q, Zhong M, Liu W, Li J, Huang J, Zheng L. Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). Experimental lung research 2011;37:427-34.
    37. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research 2008;36:D154-8.
    38. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002;18:333-4.
    39. Gross KL, Cidlowski JA. Tissue-specific glucocorticoid action: a family affair. Trends in endocrinology and metabolism: TEM 2008;19:331-9.
    40. Law ME, Corsino PE, Jahn SC, Davis BJ, Chen S, Patel B, Pham K, Lu J, Sheppard B, Norgaard P, Hong J, Higgins P, et al. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene 2012.
    41. Aaboe M, Birkenkamp-Demtroder K, Wiuf C, Sorensen FB, Thykjaer T, Sauter G, Jensen KM, Dyrskjot L, Orntoft T. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer research 2006;66:3434-42.
    42. Gunes S, Yegin Z, Sullu Y, Buyukalpelli R, Bagci H. SOX4 expression levels in urothelial bladder carcinoma. Pathology, research and practice 2011;207:423-7.
    43. Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S, Yokota J, Gonzalez-Neira A, Benitez J, Clevers HC, Cigudosa JC, Lazo PA, et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Human molecular genetics 2009;18:1343-52.
    44. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008;451:147-52.
    45. Sheng Q, Liu J. The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. British journal of cancer 2011;104:1241-5.
    46. Siwak DR, Carey M, Hennessy BT, Nguyen CT, McGahren Murray MJ, Nolden L, Mills GB. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. Journal of oncology 2010;2010:568938.
    47. Semenza GL. Targeting HIF-1 for cancer therapy. Nature reviews. Cancer 2003;3:721-32.
    48. Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer progression. Cancer biology & therapy 2011;11:714-23.
    49. Vernon AE, LaBonne C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development 2006;133:3359-70.
    50. Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, Baulida J, Bonilla F, de Herreros AG, Diaz VM. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. The Journal of biological chemistry 2010;285:3794-805.
    51. Lubec B, Labudova O, Hoeger H, Kirchner L, Lubec G. Expression of transcription factors in the brain of rats with perinatal asphyxia. Biology of the neonate 2002;81:266-78.
    52. Liu XS, Zhang ZG, Zhang RL, Gregg SR, Meng H, Chopp M. Comparison of in vivo and in vitro gene expression profiles in subventricular zone neural progenitor cells from the adult mouse after middle cerebral artery occlusion. Neuroscience 2007;146:1053-61.
    53. Lendahl U, Lee KL, Yang H, Poellinger L. Generating specificity and diversity in the transcriptional response to hypoxia. Nature reviews. Genetics 2009;10:821-32.
    54. Ben-Zur T, Feige E, Motro B, Wides R. The mammalian Odz gene family: homologs of a Drosophila pair-rule gene with expression implying distinct yet overlapping developmental roles. Developmental biology 2000;217:107-20.
    55. Behrman S, Acosta-Alvear D, Walter P. A CHOP-regulated microRNA controls rhodopsin expression. The Journal of cell biology 2011;192:919-27.
    56. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J, Vahdat LT, Silver RB, et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer cell 2013;23:63-76.
    57. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS, Jr. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Molecular and cellular biology 1995;15:943-53.
    58. Melhem A, Yamada SD, Fleming GF, Delgado B, Brickley DR, Wu W, Kocherginsky M, Conzen SD. Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clinical cancer research : an official journal of the American Association for Cancer Research 2009;15:3196-204.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE