研究生: |
李雨橋 Li, Yu Chiao |
---|---|
論文名稱: |
利用活體影像進行果蠅黏著型連接運輸功能之研究探討 Novel transport function of adherens junction revealed by live imaging in Drosophila |
指導教授: |
徐瑞洲
Hsu, Jui Chou |
口試委員: |
桑自剛
Sang, Tzu Kang 孫以瀚 Sun, Y. Henry 簡正鼎 Chien, Cheng Ting 陳光超 Chen, Guang Chao 陳壁彰 Chen, Bi Chang |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 細胞黏著分子 、黏著型連接 、細胞間運輸 、胞內體 |
外文關鍵詞: | Intercellular transport |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黏著型連接(adherens junction)為人所知的功能為調節細胞與細胞間的黏著。DE-cadherin和Echinoid是果蠅表皮細胞黏著型連接中主要的黏著分子。在此我們利用活體影像的技術追蹤果蠅胚胎表皮細胞中內吞Echinoid囊泡的移動,證明了Echinoid囊泡會與含有Rab5或Rab11的胞內體共位且一起移動。令人驚訝的是,這些含有Echinoid的胞內體會透過黏著型連接進行具方向性的細胞至細胞間移動。與此一致,Echinoid囊泡在細胞至細胞間的移動需要黏著型連接中DE-cadherin的存在。活體影像進一步顯示Echinoid囊泡會沿著與黏著型連接相關的微管(microtubule)進入鄰近的細胞,而此過程需要驅動蛋白(kinesin)的協助。重要的是,含有DE-cadherin和EGFR的囊泡也有細胞至細胞間移動的現象。總結而言,我們的研究結果揭示了黏著型連接的運輸功能。此外,這種以黏著型連接作為基礎的細胞間運輸提供了一個平台,讓連接蛋白和信號受體可以在相鄰細胞間做交換。
Adherens junctions are known for their role in mediating cell-cell adhesion. DE-cadherin and Echinoid are the principle adhesion molecules of adherens junctions in Drosophila epithelia. Here, using live imaging to trace the movement of endocytosed Echinoid vesicles in the epithelial cells of Drosophila embryos, we demonstrate that Echinoid vesicles co-localize and move with Rab5- or Rab11-positive endosomes. Surprisingly, these Echinoid-containing endosomes undergo directional cell-to-cell movement, through adherens junctions. Consistent with this, cell-to-cell movement of Echinoid vesicles requires the presence of DE-cadherin at adherens junctions. Live imaging further revealed that Echinoid vesicles move along adherens junction-associated microtubules into adjacent cells, a process requiring a kinesin motor. Importantly, DE-cadherin- and EGFR-containing vesicles also exhibit intercellular movement. Together, our results unveil a transport function of adherens junctions. Furthermore, this adherens junctions-based intercellular transport provides a platform for the exchange of junctional proteins and signaling receptors between neighboring cells.
Ahmed, A., Chandra, S., Magarinos, M. and Vaessin, H. (2003). Echinoid mutants exhibit neurogenic phenotypes and show synergistic interactions with the Notch signaling pathway. Development 130, 6295-6304.
Ai, M., Blais, S., Park, J. Y., Min, S., Neubert, T. A. and Suh, G. S. (2013). Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 10741-10749.
Airoldi, S. J., McLean, P. F., Shimada, Y. and Cooley, L. (2011). Intercellular protein movement in syncytial Drosophila follicle cells. Journal of cell science 124, 4077-4086.
Assaker, G., Ramel, D., Wculek, S. K., Gonzalez-Gaitan, M. and Emery, G. (2010). Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proceedings of the National Academy of Sciences of the United States of America 107, 22558-22563.
Bai, J., Chiu, W., Wang, J., Tzeng, T., Perrimon, N. and Hsu, J. (2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development 128, 591-601.
Chen, B. C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., Janetopoulos, C., Wu, X. S., Hammer, J. A., 3rd, Liu, Z. et al. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998.
Dobrowolski, R. and De Robertis, E. M. (2012). Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nature reviews. Molecular cell biology 13, 53-60.
Escudero, L. M., Wei, S. Y., Chiu, W. H., Modolell, J. and Hsu, J. C. (2003). Echinoid synergizes with the Notch signaling pathway in Drosophila mesothorax bristle patterning. Development 130, 6305-6316.
Evans, T. A., Haridas, H. and Duffy, J. B. (2009). Kekkon5 is an extracellular regulator of BMP signaling. Developmental biology 326, 36-46.
Gorfinkiel, N. and Arias, A. M. (2007). Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. Journal of cell science 120, 3289-3298.
Harris, T. J. and Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nature reviews. Molecular cell biology 11, 502-514.
Ho, Y. H., Lien, M. T., Lin, C. M., Wei, S. Y., Chang, L. H. and Hsu, J. C. (2010). Echinoid regulates Flamingo endocytosis to control ommatidial rotation in the Drosophila eye. Development 137, 745-754.
Huang, J., Huang, L., Chen, Y. J., Austin, E., Devor, C. E., Roegiers, F. and Hong, Y. (2011). Differential regulation of adherens junction dynamics during apical-basal polarization. Journal of cell science 124, 4001-4013.
Islam, R., Wei, S. Y., Chiu, W. H., Hortsch, M. and Hsu, J. C. (2003). Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway. Development 130, 2051-2059.
Jankovics, F. and Brunner, D. (2006). Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Developmental cell 11, 375-385.
Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. and Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of biological chemistry 262, 9412-9420.
Karpova, N., Bobinnec, Y., Fouix, S., Huitorel, P. and Debec, A. (2006). Jupiter, a new Drosophila protein associated with microtubules. Cell motility and the cytoskeleton 63, 301-312.
Kumar, N. M. and Gilula, N. B. (1996). The gap junction communication channel. Cell 84, 381-388.
Laplante, C. and Nilson, L. A. (2006). Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 133, 3255-3264.
Laplante, C. and Nilson, L. A. (2011). Asymmetric distribution of Echinoid defines the epidermal leading edge during Drosophila dorsal closure. The Journal of cell biology 192, 335-348.
Lin, H. P., Chen, H. M., Wei, S. Y., Chen, L. Y., Chang, L. H., Sun, Y. J., Huang, S. Y. and Hsu, J. C. (2007). Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Developmental biology 311, 423-433.
McDonald, K., Sharp, D. J. and Rickoll, W. L. (2000). Preparation of thin sections of Drosophila for examination by transmission electron microscopy. W. Sullivan, M. Ashburner, and R.S. Hawley (Eds.), Drosophila Protocols, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 245-271.
McLean, P. F. and Cooley, L. (2013). Protein equilibration through somatic ring canals in Drosophila. Science 340, 1445-1447.
Millard, T. H. and Martin, P. (2008). Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135, 621-626.
Minestrini, G., Mathe, E. and Glover, D. M. (2002). Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton during Drosophila oogenesis. Journal of cell science 115, 725-736.
Panakova, D., Sprong, H., Marois, E., Thiele, C. and Eaton, S. (2005). Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58-65.
Ramirez-Weber, F. A. and Kornberg, T. B. (1999). Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599-607.
Rawlins, E. L., White, N. M. and Jarman, A. P. (2003). Echinoid limits R8 photoreceptor specification by inhibiting inappropriate EGF receptor signalling within R8 equivalence groups. Development 130, 3715-3724.
Robinson, D. N. and Cooley, L. (1996). Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends in cell biology 6, 474-479.
Ross, J. L., Ali, M. Y. and Warshaw, D. M. (2008). Cargo transport: molecular motors navigate a complex cytoskeleton. Current opinion in cell biology 20, 41-47.
Rustom, A., Saffrich, R., Markovic, I., Walther, P. and Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science 303, 1007-1010.
Ruta, V., Datta, S. R., Vasconcelos, M. L., Freeland, J., Looger, L. L. and Axel, R. (2010). A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686-690.
Satoh, A. K., O'Tousa, J. E., Ozaki, K. and Ready, D. F. (2005). Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132, 1487-1497.
Spencer, S. A. and Cagan, R. L. (2003). Echinoid is essential for regulation of Egfr signaling and R8 formation during Drosophila eye development. Development 130, 3725-3733.
Tepass, U., Gruszynski-DeFeo, E., Haag, T. A., Omatyar, L., Torok, T. and Hartenstein, V. (1996). shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes & development 10, 672-685.
Uemura, T., Oda, H., Kraut, R., Hayashi, S., Kotaoka, Y. and Takeichi, M. (1996). Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes & development 10, 659-671.
Wei, S. Y., Escudero, L. M., Yu, F., Chang, L. H., Chen, L. Y., Ho, Y. H., Lin, C. M., Chou, C. S., Chia, W., Modolell, J. et al. (2005). Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Developmental cell 8, 493-504.
Wirtz-Peitz, F., Nishimura, T. and Knoblich, J. A. (2008). Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135, 161-173.