研究生: |
曾志賢 Tseng, Chih-Sian |
---|---|
論文名稱: |
綠膿桿菌第二套第六型分泌系統轉錄調節蛋白Sfa2之特性分析 Characterization of Sfa2, a transcriptional regulator for HSI-II of Pseudomonas aeruginosa PAO1 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
林乃君
Lin, Nai-Chun 林靖婷 Lin, Ching-Ting |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 綠膿桿菌 、第六型分泌系統 、σ54 依賴性的轉錄活化子基因 |
外文關鍵詞: | Pseudomonas aeruginosa PAO1, type VI secretion system, σ54-dependent transcriptional activator |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
革蘭氏陰性菌具有多樣性的分泌系統,能將蛋白質通過複雜雙層膜構造,輸送到胞外。最近發現許多病原細菌帶有能將作用蛋白質經由一種新穎、命名為第六型分泌系統的裝置、直接注入標的細胞。綠膿桿菌為人類伺機性病原菌,具有鞭毛,且能導致嚴重感染,包括急性敗血症和肺纖維化囊腫。綠膿桿菌帶有三套第六型分泌系統的基因群組,極可能與該菌感染能力有很大關係。雖然已經有許多文獻探討第六型分泌系統的組裝方式,但對其調控的了解仍然相當欠缺。在綠膿桿菌第二套的第六型分泌系統的基因群組中,我們發現一個σ54 依賴性的轉錄活化子基因,命名為sfa2 (pa1663)。本研究建構了Sfa2的剔除突變株,結果發現生長曲線、聚集能力、生物膜生成,綠膿素產量,剛果紅結合力,泳動與群泳能力、溶血性、酯解酶,彈性蛋白酶與蛋白酶活性,捕鐵能力,以及鼠李醣酯產量分析等皆與野生株無顯著的差異。在VB培養液所培養的PAO1和Sfa2的突變株在AHL產量,細胞表面的型態以及胞外分泌蛋白體有較明顯的影響。但是細菌間的競爭能力,對哺乳細胞毒性和入侵能力,以及對大白菜葉子的感染能力,在Sfa2的突變株則顯著的下降。利用生物資訊學分析可知Sfa2蛋白含有細菌轉錄增強性結合蛋白的重要保留區域,包括AAA+專一性區域以及螺旋-轉-螺旋區域。進一步利用即時定量聚合酶連鎖反應分析可知,第二套第六型分泌系統的基因群組在基礎養分的培養環境下才會被誘導出來,而剃除Sfa2基因會使得第二套基因群組的表現量下降。使用凝膠電泳遷移分析確認Sfa2會與pa1656上游地方約372-672 bp 的區域結合。我們也利用雙分子螢光互補實驗分析證實Saf2與σ54 有交互作用。這些結果證實σ54 依賴性轉錄活化子Sfa2在綠膿桿菌PAO1第二套第六型分泌系統擔負著重要的轉錄調控作用。
1. Hachani, A., Lossi, N. S., Hamilton, A., Jones, C., Bleves, S., Albesa-Jove, D., and Filloux, A. (2011) Type VI Secretion System in Pseudomonas aeruginosa SECRETION AND MULTIMERIZATION OF VgrG PROTEINS, Journal of Biological Chemistry 286.
2. Cossart, P., and Sansonetti, P. J. (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens, Science 304, 242-248.
3. Merrell, D. S., and Falkow, S. (2004) Frontal and stealth attack strategies in microbial pathogenesis, Nature 430, 250-256.
4. Skaar, E. P. (2010) The battle for iron between bacterial pathogens and their vertebrate hosts, PLoS Pathog 6, e1000949.
5. Bullen, J. J., and Griffiths, E. (1999) Iron and infection : molecular, physiological and clinical aspects, 2nd ed., John Wiley, Chichester ; New York.
6. Posey, J. E., and Gherardini, F. C. (2000) Lack of a role for iron in the Lyme disease pathogen, Science 288, 1651-1653.
7. Fischbach, M. A., Lin, H., Liu, D. R., and Walsh, C. T. (2006) How pathogenic bacteria evade mammalian sabotage in the battle for iron, Nat Chem Biol 2, 132-138.
8. Ruby, T., and Monack, D. M. (2011) At home with hostility: How do pathogenic bacteria evade mammalian immune surveillance to establish persistent infection?, F1000 Biol Rep 3, 1.
9. Janeway, C. A., Jr., and Medzhitov, R. (2002) Innate immune recognition, Annu Rev Immunol 20, 197-216.
10. Lee, V. T., and Schneewind, O. (2001) Protein secretion and the pathogenesis of bacterial infections, Genes Dev 15, 1725-1752.
11. Tseng, T. T., Tyler, B. M., and Setubal, J. C. (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology, BMC Microbiol 9 Suppl 1, S2.
12. Cascales, E. (2008) The type VI secretion toolkit, EMBO Rep 9, 735-741.
13. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C., and Ala'Aldeen, D. (2004) Type V protein secretion pathway: the autotransporter story, Microbiol Mol Biol Rev 68, 692-744.
14. Saier, M. H., Jr. (2006) Protein secretion and membrane insertion systems in gram-negative bacteria, J Membr Biol 214, 75-90.
15. Williams, S. G., Varcoe, L. T., Attridge, S. R., and Manning, P. A. (1996) Vibrio cholerae Hcp, a secreted protein coregulated with HlyA, Infect Immun 64, 283-289.
16. Roest, H. P., Mulders, I. H., Spaink, H. P., Wijffelman, C. A., and Lugtenberg, B. J. (1997) A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group, Molecular plant-microbe interactions : MPMI 10, 938-941.
17. Wang, J., Li, C., Yang, H., Mushegian, A., and Jin, S. (1998) A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice, J Bacteriol 180, 6764-6768.
18. Purcell, M., and Shuman, H. A. (1998) The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages, Infect Immun 66, 2245-2255.
19. Pallen, M., Chaudhuri, R., and Khan, A. (2002) Bacterial FHA domains: neglected players in the phospho-threonine signalling game?, Trends Microbiol 10, 556-563.
20. Durocher, D., and Jackson, S. P. (2002) The FHA domain, FEBS Lett 513, 58-66.
21. Das, S., and Chaudhuri, K. (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis, In Silico Biol 3, 287-300.
22. Bingle, L. E., Bailey, C. M., and Pallen, M. J. (2008) Type VI secretion: a beginner's guide, Curr Opin Microbiol 11, 3-8.
23. Selkrig, J., Mosbahi, K., Webb, C. T., Belousoff, M. J., Perry, A. J., Wells, T. J., Morris, F., Leyton, D. L., Totsika, M., Phan, M. D., Celik, N., Kelly, M., Oates, C., Hartland, E. L., Robins-Browne, R. M., Ramarathinam, S. H., Purcell, A. W., Schembri, M. A., Strugnell, R. A., Henderson, I. R., Walker, D., and Lithgow, T. (2012) Discovery of an archetypal protein transport system in bacterial outer membranes, Nat Struct Mol Biol 19, 506-510.
24. Lyczak, J. B., Cannon, C. L., and Pier, G. B. (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist, Microbes Infect 2, 1051-1060.
25. Potvin, E., Lehoux, D. E., Kukavica-Ibrulj, I., Richard, K. L., Sanschagrin, F., Lau, G. W., and Levesque, R. C. (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets, Environ Microbiol 5, 1294-1308.
26. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordonez, C. L., Lory, S., Walz, T., Joachimiak, A., and Mekalanos, J. J. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science 312, 1526-1530.
27. Filloux, A., Hachani, A., and Bleves, S. (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes, Microbiology 154, 1570-1583.
28. Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y., and Mougous, J. D. (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block, Proc Natl Acad Sci U S A 105, 3733-3738.
29. Leiman, P. G., Basler, M., Ramagopal, U. A., Bonanno, J. B., Sauder, J. M., Pukatzki, S., Burley, S. K., Almo, S. C., and Mekalanos, J. J. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin, Proc Natl Acad Sci U S A 106, 4154-4159.
30. Pukatzki, S., McAuley, S. B., and Miyata, S. T. (2009) The type VI secretion system: translocation of effectors and effector-domains, Curr Opin Microbiol 12, 11-17.
31. Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S., and Lory, S. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa, Dev Cell 7, 745-754.
32. Goodman, A. L., Merighi, M., Hyodo, M., Ventre, I., Filloux, A., and Lory, S. (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen, Genes Dev 23, 249-259.
33. Russell, A. B., Hood, R. D., Bui, N. K., LeRoux, M., Vollmer, W., and Mougous, J. D. (2011) Type VI secretion delivers bacteriolytic effectors to target cells, Nature 475, 343-347.
34. Hood, R. D., Singh, P., Hsu, F., Guvener, T., Carl, M. A., Trinidad, R. R., Silverman, J. M., Ohlson, B. B., Hicks, K. G., Plemel, R. L., Li, M., Schwarz, S., Wang, W. Y., Merz, A. J., Goodlett, D. R., and Mougous, J. D. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria, Cell Host Microbe 7, 25-37.
35. Wigneshweraraj, S. R., Burrows, P. C., Bordes, P., Schumacher, J., Rappas, M., Finn, R. D., Cannon, W. V., Zhang, X., and Buck, M. (2005) The second paradigm for activation of transcription, Prog Nucleic Acid Res Mol Biol 79, 339-369.
36. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y., and Gralla, J. D. (2000) The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor, J Bacteriol 182, 4129-4136.
37. Ghosh, T., Bose, D., and Zhang, X. (2010) Mechanisms for activating bacterial RNA polymerase, FEMS Microbiol Rev 34, 611-627.
38. Cases, I., Ussery, D. W., and de Lorenzo, V. (2003) The sigma54 regulon (sigmulon) of Pseudomonas putida, Environ Microbiol 5, 1281-1293.
39. Bernard, C. S., Brunet, Y. R., Gavioli, M., Lloubes, R., and Cascales, E. (2011) Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins, J Bacteriol 193, 2158-2167.
40. Rappas, M., Schumacher, J., Niwa, H., Buck, M., and Zhang, X. (2006) Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF, J Mol Biol 357, 481-492.
41. Ogura, T., Whiteheart, S. W., and Wilkinson, A. J. (2004) Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases, J Struct Biol 146, 106-112.
42. Totten, P. A., Lara, J. C., and Lory, S. (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene, J Bacteriol 172, 389-396.
43. Kitaoka, M., Miyata, S. T., Brooks, T. M., Unterweger, D., and Pukatzki, S. (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae, Journal of bacteriology 193, 6471-6482.
44. Altschul, S. F., and Koonin, E. V. (1998) Iterated profile searches with PSI-BLAST--a tool for discovery in protein databases, Trends Biochem Sci 23, 444-447.
45. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25, 3389-3402.
46. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids, J Mol Biol 166, 557-580.
47. Wilson, C. G., Magliery, T. J., and Regan, L. (2004) Detecting protein-protein interactions with GFP-fragment reassembly, Nat Methods 1, 255-262.
48. Metcalf, W. W., Jiang, W., Daniels, L. L., Kim, S. K., Haldimann, A., and Wanner, B. L. (1996) Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria, Plasmid 35, 1-13.
49. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J., and Schweizer, H. P. (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene 212, 77-86.
50. Achtman, M., Morelli, G., and Schwuchow, S. (1978) Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates, J Bacteriol 135, 1053-1061.
51. Kong, K. F., Jayawardena, S. R., Indulkar, S. D., Del Puerto, A., Koh, C. L., Hoiby, N., and Mathee, K. (2005) Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB beta-lactamases, proteases, quorum sensing, and other virulence factors, Antimicrob Agents Chemother 49, 4567-4575.
52. Essar, D. W., Eberly, L., Hadero, A., and Crawford, I. P. (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications, J Bacteriol 172, 884-900.
53. Friedman, L., and Kolter, R. (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix, J Bacteriol 186, 4457-4465.
54. Jackson, K. D., Starkey, M., Kremer, S., Parsek, M. R., and Wozniak, D. J. (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation, J Bacteriol 186, 4466-4475.
55. Bordi, C., Lamy, M. C., Ventre, I., Termine, E., Hachani, A., Fillet, S., Roche, B., Bleves, S., Mejean, V., Lazdunski, A., and Filloux, A. (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis, Mol Microbiol 76, 1427-1443.
56. Ueda, A., and Wood, T. K. (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885), PLoS Pathog 5, e1000483.
57. O'Toole, G. A., and Kolter, R. (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol Microbiol 28, 449-461.
58. Braun, T. F., Poulson, S., Gully, J. B., Empey, J. C., Van Way, S., Putnam, A., and Blair, D. F. (1999) Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli, J Bacteriol 181, 3542-3551.
59. Toutain, C. M., Zegans, M. E., and O'Toole, G. A. (2005) Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa, J Bacteriol 187, 771-777.
60. Tremblay, J., and Deziel, E. (2008) Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays, J Basic Microbiol 48, 509-515.
61. Sokol, P. A., Ohman, D. E., and Iglewski, B. H. (1979) A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa, J Clin Microbiol 9, 538-540.
62. Sierra, G. (1957) A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates, Antonie Van Leeuwenhoek 23, 15-22.
63. Lundbeck, H., and Tirunarayanan, M. O. (1966) Investigation on the enzymes and toxins of staphylococci. Study of the "egg yolk reaction" using an agar plate assay method, Acta pathologica et microbiologica Scandinavica 68, 123-134.
64. Zhu, H., Bandara, R., Conibear, T. C., Thuruthyil, S. J., Rice, S. A., Kjelleberg, S., Givskov, M., and Willcox, M. D. (2004) Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection, Invest Ophthalmol Vis Sci 45, 1897-1903.
65. Zhu, H., Thuruthyil, S. J., and Willcox, M. D. (2002) Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis, J Med Microbiol 51, 1063-1070.
66. Milagres, A. M., Machuca, A., and Napoleao, D. (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay, J Microbiol Methods 37, 1-6.
67. Siegmund, I., and Wagner, F. (1991) New Method for Detecting Rhamnolipids Excreted by Pseudomonas Species during Growth on Mineral Agar, Biotechnol Tech 5, 265-268.
68. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S., and Williams, P. (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones, Microbiology 143 ( Pt 12), 3703-3711.
69. Latifi, A., Winson, M. K., Foglino, M., Bycroft, B. W., Stewart, G. S., Lazdunski, A., and Williams, P. (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1, Mol Microbiol 17, 333-343.
70. Wehmhoner, D., Haussler, S., Tummler, B., Jansch, L., Bredenbruch, F., Wehland, J., and Steinmetz, I. (2003) Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome, J Bacteriol 185, 5807-5814.
71. Sana, T. G., Hachani, A., Bucior, I., Soscia, C., Garvis, S., Termine, E., Engel, J., Filloux, A., and Bleves, S. (2012) The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells, The Journal of biological chemistry 287, 27095-27105.
72. Starkey, M., and Rahme, L. G. (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts, Nat Protoc 4, 117-124.
73. Filiatrault, M. J., Picardo, K. F., Ngai, H., Passador, L., and Iglewski, B. H. (2006) Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth, Infect Immun 74, 4237-4245.
74. Lenz, A. P., Williamson, K. S., Pitts, B., Stewart, P. S., and Franklin, M. J. (2008) Localized gene expression in Pseudomonas aeruginosa biofilms, Appl Environ Microbiol 74, 4463-4471.
75. Yuan, J. S., Reed, A., Chen, F., and Stewart, C. N., Jr. (2006) Statistical analysis of real-time PCR data, BMC Bioinformatics 7, 85.
76. Rombel, I., Peters-Wendisch, P., Mesecar, A., Thorgeirsson, T., Shin, Y. K., and Kustu, S. (1999) MgATP binding and hydrolysis determinants of NtrC, a bacterial enhancer-binding protein, J Bacteriol 181, 4628-4638.
77. Barrett, J., Ray, P., Sobczyk, A., Little, R., and Dixon, R. (2001) Concerted inhibition of the transcriptional activation functions of the enhancer-binding protein NIFA by the anti-activator NIFL, Mol Microbiol 39, 480-493.
78. Tucker, N. P., D'Autreaux, B., Spiro, S., and Dixon, R. (2006) Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR, Biochem Soc Trans 34, 191-194.
79. Sallai, L., Hendle, J., and Tucker, P. A. (2003) X-ray crystallographic characterization and phasing of an NtrC homologue, Acta Crystallogr D Biol Crystallogr 59, 1656-1658.
80. Lau, G. W., Hassett, D. J., Ran, H., and Kong, F. (2004) The role of pyocyanin in Pseudomonas aeruginosa infection, Trends Mol Med 10, 599-606.
81. Overhage, J., Bains, M., Brazas, M. D., and Hancock, R. E. (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance, J Bacteriol 190, 2671-2679.
82. Lazdunski, A., Guzzo, J., Filloux, A., Bally, M., and Murgier, M. (1990) Secretion of extracellular proteins by Pseudomonas aeruginosa, Biochimie 72, 147-156.
83. Nishino, N., and Powers, J. C. (1980) Pseudomonas aeruginosa elastase. Development of a new substrate, inhibitors, and an affinity ligand, J Biol Chem 255, 3482-3486.
84. Dubey, G. P., and Ben-Yehuda, S. (2011) Intercellular nanotubes mediate bacterial communication, Cell 144, 590-600.
85. Kojic, M., and Venturi, V. (2001) Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator, Journal of bacteriology 183, 3712-3720.
86. Kojic, M., Aguilar, C., and Venturi, V. (2002) TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters, Journal of bacteriology 184, 2324-2330.
87. Leung, K. Y., Siame, B. A., Snowball, H., and Mok, Y. K. (2011) Type VI secretion regulation: crosstalk and intracellular communication, Current opinion in microbiology 14, 9-15.
88. Chakraborty, S., Sivaraman, J., Leung, K. Y., and Mok, Y. K. (2011) Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda, The Journal of biological chemistry 286, 39417-39430.
89. Jobichen, C., Chakraborty, S., Li, M., Zheng, J., Joseph, L., Mok, Y. K., Leung, K. Y., and Sivaraman, J. (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda, PLoS One 5, e12910.
90. Pollack, M., and Anderson, S. E., Jr. (1978) Toxicity of Pseudomonas aeruginosa exotoxin A for human macrophages, Infection and immunity 19, 1092-1096.
91. Finck-Barbancon, V., Goranson, J., Zhu, L., Sawa, T., Wiener-Kronish, J. P., Fleiszig, S. M., Wu, C., Mende-Mueller, L., and Frank, D. W. (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury, Molecular microbiology 25, 547-557.
92. Simon, R., Priefer, U., and Puhler, A. (1983) A Broad Host Range Mobilization System for Invivo Genetic-Engineering - Transposon Mutagenesis in Gram-Negative Bacteria, Bio-Technol 1, 784-791.
93. Magliery, T. J., Wilson, C. G., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., and Regan, L. (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism, J Am Chem Soc 127, 146-157.
94. Bhuwan, M., Lee, H. J., Peng, H. L., and Chang, H. Y. (2012) Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 strain, J Biol Chem 287, 1903-1914.
95. Furste, J. P., Pansegrau, W., Frank, R., Blocker, H., Scholz, P., Bagdasarian, M., and Lanka, E. (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector, Gene 48, 119-131.
96. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.