簡易檢索 / 詳目顯示

研究生: 泰爾迪婭
Muthiarani, Tri Eltiyah
論文名稱: 棕櫚油廠廢水(污泥棕櫚油)轉化為特殊應用的有價值化合物
The Transformation of Palm Oil Wastewater (Sludge Crude Palm Oil) into Valuable Compounds for Spesific Application
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 余靖
Yu, Chin
趙奕姼
Chao, Ito
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 69
中文關鍵詞: 污泥棕櫚油酯化反應脂肪酸甲酯油酸歐米茄9結晶
外文關鍵詞: Sludge Crude Palm Oil, Esterification reaction, Fatty acid methyl ester, Oleic acid, Omega-9, Crystallization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 棕櫚油在印尼經濟的成長中扮演著著重要角色,隨著這個行業成長得越來越大,
    通過壓製提取棕櫚油後,通常利用池塘系統用於處理諸如廢水中的粗棕櫚油(CPO)污泥,處理廢水到符合排放標準,所需的土地空間,因此越來越大。為了克服這個缺點,本項由循環經濟指導的研究,開發了一種替代方法將CPO污泥處理和轉化為特定應用的有價值產品,例如脂肪酸甲酯(FAME),可以作為生質柴油。然而,FAME中仍然含有許多有價值的化合物,如油酸(Omega-9)之不飽和脂肪酸。在此,我們首先探討通過酯化反應將CPO污泥轉化為生質柴油的幾種催化劑,例如硫酸(H2SO4)、硫酰(SO2Cl2)、氫氧化鈉(NaOH)、和氫氧化四甲銨(TMAH),輔以氣相層析-質譜儀(GC-MS)分析進而確定總FAME。顯示使用15%濃度的TMAH酯化反應,可以得到最高的總FAME(98.3%)。進一步使用美國材料與試驗協會(ASTM)相關方法進行測試,以確保FAME可歸類為生物柴油。然後,使用效應曲面法(RSM)實驗設計,使用尿素和甲醇結晶FAME繼續進行油酸提取,以產生最佳的油酸提取。採用RSM結晶萃取,最佳結果為74.6%,反應條件為尿素/FAME比(2.02/1); MEOH/尿素比(4.37/1)和24.4小時反應時間。


    Palm oil plays a significant role in the Indonesian economic growth as this industry becomes bigger and wider. After the extraction of palm oil by pressing, the wastewater containing crude palm oil (CPO) sludge is produced. In general, pond system is used to treat this CPO. Pond system needs very large land space to make the wastewater completely ready to be discharged. To overcome this drawback, this research guided by circular economy develops an alternative approach to treat and transform CPO sludge into valuable product for specific application such as fatty acid methyl ester (FAME) as a biodiesel. Nevertheless, the FAME still contains a lot of valuable compounds such as oleic acid (Omega-9) unsaturated fatty acid. Herein, we explored to transform the CPO sludge into a biodiesel with several type of catalysts such as sulfuric acid (H2SO4), sulfuryl chloride (SO2Cl2), sodium hydroxide (NaOH) and tetramethylammonium hydroxide (TMAH) by esterification reaction. The total FAME was determined by gas chromatography-mass spectrometry (GC-MS) analysis. The esterification using 15% concentration of TMAH showed the highest total FAME (98.3%). The FAME was further tested using relevant methods from American Society Testing and Materials (ASTM) to make sure that the FAME can be categorized as biodiesel. Then the experiment was continued to oleic acid extraction by crystallization FAME with urea and methanol using response surface methodology (RSM) experimental design to yield the optimal ones. The extraction by crystallization using RSM showed the optimum result of 74.6% with reaction conditions are Urea/FAME ratio (2.02/1) ; MeOH/Urea ratio ( 4.37/1) and 24.42 hours reaction time.

    摘要.................................................................I Abstract............................................................II Acknowledgement....................................................III List of Contents....................................................IV List of Figures...................................................VIII List of Tables......................................................IX List of Schemes......................................................X Chapter 1 Introduction...............................................1 1-1 Research Background..............................................1 1-2 Palm Oil Mill....................................................2 1-3 Crude Palm Oil (CPO).............................................3 1-3-1 CPO Sludge.....................................................5 1-4 Biodiesel........................................................5 1-5 Catalyst.........................................................7 Chapter II Literature Review.........................................9 2-1 Transesterification..............................................9 2-2 Esterification..................................................10 2-2 Crystallization of Oleic Acid...................................11 2-3 Response Surface Methodology....................................13 2-4 Central Composite Design........................................14 2-5 Gas Chromatography - Mass Spectrometry..........................15 Chapter III Experimental Section...................................17 3-1 Apparatuses and Materials......................................17 3-1-1 Experimental Apparatuses......................................17 3-1-2 Materials.....................................................17 3-2 Procedures......................................................17 3-2-1 Sample Preparation............................................17 3-2-2 The Process of Converting Fatty Acids into Esters.............18 3-2-3 The Process of Separating Fatty Acid Methyl Esters............18 3-3 The Physico-chemical Properties of FAME.........................18 3-3-1 The Viscosity and Color of Fatty Acid Methyl Esters...........18 3-3-2 Analysis of Acid Value........................................19 3-3-2-1 Standardisation of KOH......................................19 3-3-2-2 Acid Value of CPO Sludge (ASTM D-664).......................19 3-3-2-3 Acid Value of FAME..........................................19 3-3-3 Analysis of Water Content.....................................20 3-3-4 Analysis of Density (ASTM-D1217-15)..........................20 3-3-5 Analysis of Viscosity (ASTM D-445)............................21 3-4 The Optimization of Oleic Acid Extraction from FAME.............22 3-4-1 The Crystallization of FAME...................................22 3-4-2 Optimization and Variable Codes...............................22 3-4-3 Optimization of Crystallization Reaction......................25 3-4-3-1 Experiments Data Analysis order 1...........................25 3-4-3-2 Experiments Data Analysis order 2...........................26 Chapter IV Results and Discussions..................................27 4-1 Characteristics CPO Sludge......................................27 4-2 The Conversion of CPO Sludge into Fatty Acid Methyl Esters......27 4-3 The Effect of Catalyst amount on The Yield of FAME..............29 4-3-1 Sulfuric Acid.................................................29 4-3-2 Sulfuryl Chloride.............................................31 4-3-3 Sodium Hydroxide.............................................32 4-3-4 Tetramethylammonium Hydroxide.................................33 4-4 Effect of Catalysts Types on The Yield of FAME..................34 4-5 Effect of Activated Carbon and Filtration of FAME...............35 4-6 Properties of FAME..............................................37 4-6-1 Water Content.................................................37 4-6-2 Density.......................................................38 4-6-3 Viscosity.....................................................39 4-6-4 Acid Value....................................................40 4-7 Oleic Acid Extraction by Crystallisation with Urea..............41 4-7-1 The Percentage of Oleic Acid in CPO Sludge....................42 4-7-2 The Effect of Urea/FAME Ratio on Oleic Acid Percentage in CPO Sludge..............................................................43 4-7-3 The Effect of Methanol/Urea Ratio on Oleic Acid Percentage in CPO Sludge..............................................................44 4-7-4 The Effect of Reaction Time on Oleic Acid Percentage in CPO Sludge ....................................................................45 4-8 The Optimization of Extraction..................................46 4-8-1 Data Analysis of Extraction Results using Order I of Design of Experiment..........................................................46 4-8-2 Data Analysis of Extraction using order II of Design of Experiment ....................................................................48 4-8-3 Normality Test................................................50 4-9 Specific Application............................................51 4-10 Economic Analysis and Future Works.............................51 Chapter V Conclusions...............................................53 References..........................................................54

    1. Yaser, A.Z.; Rahman, R.; Kalil, M.S. Co-composting of palm oil mill sludge-swadust. Pakistan Journal of Biological sciences.2007, 10: 4473-4478.

    2. Elfidiah; Dedik. B.; Faizal. Salni. The potency of palm oil mill effluent as a raw material for liquid fertilizer. iSNPINSA. 2012 :88-93.

    3. Varkkey, H.; Tyson, A.; Choiruzzad, S.A.B. Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and socio-political factors influencing policy. For. Policy Econ. 2018, 92 : 148–159.

    4. Yuliansyah, A.T.; Hirajima, T.; Rochmadi. Developtment of the Indonesian palm oil industry and utilization of solid waste. J. of MMIJ. 2009, 125 : 583-689.

    5. ITPC Hamburg. Market Brief: Kelapa sawit dan olahannya. Ministry of Commerce of the Republic of Indonesia. 2013.

    6. Nagendran, B.; Unnithan, U. R.; Choo, Y. M.; Kalyana. S. Characteristics of red palm oil, a carotene- and vitamin E–rich refined oil for food uses". Food and Nutrition Bulletin.2000, 21 (2): 77-82.

    7. Wu, T.Y. Pollution control technologies for the treatment of palm oil mill effluent (pome) trough end-of-pipe processes. J. Env. Magt. 2010. 91 : 1467-1490
    8. Ma, A.N. Environmental management for the oil palm industry. Palm Oil Dev. 2000, 30: 1-10.

    9. Rahayu, A.S.; Karsiwulan, D.; Yuwono, H.; Trisnawati, I.; Mulyasari, S.; Rahardjo, S.; Hokermin, S.; Paramita, V. Handbook POME-to-Biogas project development in Indonesia. Winrock International. 2015.

    10. Wong, K., K. Application of ponding system in the treatment of palm oil mill and rubber mill effluent. Pertanika. 1980, 3(2) : 133-141.

    11. Bateni, H.; Saraeian, A.; Able, C. A Comprehensive review on biodiesel purification and upgrading. Biofuel Research Journal. 2017, 15 : 668-690.

    12. Talha, N. S.; Sulaiman, S. Overview of catalysts in biodiesel production. ARPN Journal of Engineering and Applied Sciences. 2016, 11(1).

    13. Sharma, Y.C.; Singh, B. Development of biodiesel from karanja, a tree found in rural India. Fuel. 2008,67, pp : 1740–1742.

    14. Lotero, J. E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A; Goodwin, j. G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res.2005, 44, no. 14,pp: 5353–5363.
    15. Sanek, L.; Pecha, J.; Kolomaznik, K.; Barinova, M. Pilot-scale production of biodiesel from waste fats and oils using tetramethylammonium hydroxide. Waste Management. 2016. 48. 630-637.

    16. Canakci. M.; Van Gerpen, J. Biodiesel production via acid catalysis, Trans Am Soc Agric Eng. 1999, 44, pp: 1203–1210.

    17. Mumtaz, M.W.; Adnan, A.; Mukhtar, H.; Rashid, U.; Danish, M. Biodiesel prodution trough chemical and biochemical transesterification: trends, technicalities, and future perspectives. Clean Energy for Sustainable Development. 2017 :465-485.

    18. Nasreen, S.; Nafees, M.; Qureshi, L. A.; Asad, M. S.; Sadiq, A; Ali, S. D. Review of catalytic transesterification methods for biodiesel production. Intechopen. 2018, 6 : 93-119.

    19. Fessenden, R.J.; Fessenden, J.S. Study guide with solution for organic chemistry. Brooks. 1986

    20. Japir, A. A.; Salimon, J.; Derawi, D.; Yahaya, B. H.; Bahadi, M.; Al-Shuja’a, S.; Yusop, M.R. A highly efficient separation and physicochemical characteristicts of saturated fatty acids from crude palm oil fatty acids mixture using methanol crystallisation method. OCL. 2018, 25(2), A203.

    21. Wanasundara, U. Preparative and industrial + scale isolation and purification of omega + 3 polyunsaturated fatty acids from marine sources. Handbook of seafood quality, safety and health applications. Ames (Oxford): Blackwell Publishing Ltd. 2010.

    22. https://en.wikipedia.org/wiki/Response_surface_methodology

    23. Bezerra, M. A.; Santeli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008, 76 : 965-977.

    24. https://en.wikipedia.org/wiki/Gas_chromatography%E2%80%93mass_spectrometry

    25. http://www.cpeo.org/techtree/ttdescript/msgc.htm

    26. Oregon State University. GC-MS: how does it work? environmental health sciences center corvallis OR 97331, 2012.

    27. McKee, R. H.; Salls, C.M. Sulfuryl Chloride: Principles of manufacture from sulfur burner gas. Ind. Eng. Chem. 1924, 16: 351-353.

    28. Rozovskii, A.; Lin, G. Fundamentals of methanol synthesis and decomposition. Top. Catal. 2003, 22: 137-150.

    29. Kawentara, W. A.; Budiman, A. Energy Procedia. 2013, 32:190 – 199.

    30. Bello, E.I. Effects of transesterification on the colour of biodiesel. Scientia Agriculturae. 2016, 13(1): 10-13.
    31. Van Gerpen. J. Fuel Process. Technol. 2005, 86:97–107.

    32. Hayes, D.G. Urea inclusion compound formation. INFORM. 2002, 13: 781-783.

    33. Liu, S.C.; Zhang, P.; Hong; H. Ji. Concentration of Docosahexanoic Acid (DHA) and Eicosapentanioc Acid (EPA) of tuba oil by urea complexation : optimation of process parameters. Journal of Food Engineering.2006, 73:203 – 209.

    34. Ramli, M.R.; Siew, W.L.; Cheah, K.Y. Properties of high-oleic acid palm oils derived by fractional crystallization. JFSc: Food Chemistry.2008, 73:141-145

    QR CODE