研究生: |
黃映霈 Huang, Ying-Pei |
---|---|
論文名稱: |
一、丹皮酚衍生物的合成及其對 B 型肝炎病毒生長抑制作用之探究 二、開發及拓展聚(2-氯-3-丁基硫噻吩)與雜五環炔烴的脫硫基取代反應 I. Synthesis of Paeonol Derivatives and Exploration of Their Inhibitory Effect against Hepatitis B Virus II. Development and Expansion of Unprecedented Desulfitative Substitution Reactions on Poly(2- Chloro-3-butylthiothiophene) with Five-Membered Heteroaromatic Terminal Alkynes |
指導教授: |
韓建中
Han, Chien-Chung 許銘華 Hsu, Ming-Hua |
口試委員: |
張家靖
Chang, Chia-Ching 洪嘉呈 Horng, Jia-Cherng 王聖凱 Wang, Sheng-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 204 |
中文關鍵詞: | 丹皮酚 、B型肝炎病毒 、慢性肝發炎 、去硫基化薗頭耦合反應 、聚(2-氯-3-丁基硫噻吩) |
外文關鍵詞: | Paeonol, Hepatitis B Virus, Chronic liver inflammation, Desulfitative Sonogashira reaction, poly(2-chloro-3-butylthiothiophene) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文第一章裡,我們達成的是成功地製備一具抗發炎性質及展現和市售抗病毒藥物—拉米夫定相比,有更高針對性指數 (SI) 的酰胺噻唑丹皮酚磺酸酯類衍生物。丹皮酚為一傳統中草藥—牡丹根皮中主要展現活性的類黃酮化合物,並經報導擁有抗發炎、抗凝血、抗動脈粥狀硬化及抗肝纖維化等特性之分子。而關於肝纖維化,其中一項病因為慢性B型肝炎。伴隨慢性B肝病毒感染,過多、氾濫的發炎反應不僅危險,且和癌化、細胞增生的提升、癌化細胞的存活、癌細胞入侵、不正常血管增生和癌轉移有關。我們過去揭示了第一、丹皮酚的磺酸酯類衍生物在不具細胞毒性的濃度下對B肝病毒有顯著的生長抑制作用;第二、丹皮酚噻唑類化合物—2-(2-氨基噻唑-4-基)-5-甲氧基苯酚在大鼠實驗中可以有效地藉由減低發炎反應來緩和急性肺損傷;第三、丹皮酚的噻唑類磺胺基衍生物對正常細胞株有較低的細胞毒性。因此,奠基於上述的資訊及我們先前的發現,我們把對於B肝病毒基因表現及DNA複製最具抑制活性的丹皮酚磺酸酯類衍生物—2-乙酰基-5-甲氧基苯基4-甲氧基苯磺酸鹽進一步修飾成含酰胺、酰亞胺及芳基脲噻唑的丹皮酚磺酸酯類分子。其中,酰胺噻唑類化合物—4-(2-苯甲酰氨基噻唑-4-基)-5-甲氧基苯基4-甲氧基苯磺酸鹽展現了比拉米夫定和它的製備起始物更高的針對性指數 (分別為59.14、46.13和47.75)。另一方面,二芳基脲噻唑類丹皮酚磺酸酯衍生物則對人類肝、肺癌細胞株皆展現高細胞毒性,其作為多標的抗癌藥物的潛力,或是該類化合物對實驗中使用的HepG2 2.2.15細胞株展現高細胞毒性其實是源自於對細胞訊息傳遞路徑的干擾,藉此同時抑制細胞的癌化(轉化)和病毒基因的表現和複製,有待更多的評估。
在第二章中,我們成功地開發出較佳的反應條件,透過史無前例的去硫基化薗頭耦合反應 (desulfitative Sonogashira-type cross-coupling) 來進行2-乙炔基N-甲基吡咯、2-乙炔基呋喃、2-乙炔基噻吩、2-乙炔基硒吩和聚(2-氯-3-丁基硫噻吩)間的去硫基耦合。薗頭耦合反應在1975年由Sonogashira教授等人發現,並在藥物、天然物、異圓環及高分子製備上有廣泛的應用。傳統而言,本反應中親電子反應物的離去基為鹵素(碘、溴、氯)、三氟甲磺酸基、甲苯磺酸基和磺酸基,但硫化物如硫醚和硫酯之應用亦被報導過。然而,在去硫基薗頭耦合反應中,反應物卻通常含有具高電負度的氮、氧、氯原子,使得反應物呈現 電子缺乏之性質,除此之外,文獻中的例子通常是在高溫下反應或是微波下進行將近一小時。先前,本實驗室發現了一在聚(2-氯-3-丁基硫噻吩)上進行的去硫基化薗頭耦合反應,其中,末端芳香炔、正六碳末端炔、三甲基乙炔基矽烷可以在80 ℃,以10 mol% 的四(三苯基膦)鈀和碘化亞銅為催化劑、三乙胺為鹼、甲苯為溶劑反應24小時後取代丁基硫烷側鏈。在去硫基耦合反應中雖可見到薗頭反應的例子,當中的反應物卻通常含有具高電負度的氮、氧、氯原子,它們的存在可能弱化了碳硫鍵的強度,除此之外,文獻中的例子通常是在高溫下反應或是微波下進行將近一小時。然而,我們的先導實驗卻揭露了先前的反應條件並不適用在2-乙炔基N-甲基吡咯及2-乙炔基呋喃和聚(2-氯-3-丁基硫噻吩)的耦合上。而在經過對反應參數更深入的檢查後,我們成功地開發出適合套用在聚(2-氯-3-丁基硫噻吩)和異五圓環芳香炔之間的耦合反應條件 (以二甲基甲醯胺為溶劑、1,5-二氮雜二環[4.3.0]壬-5-烯 (DBN) 為鹼,10 mol% 二氯雙(三苯基膦)鈀及 5 mol% 碘化亞銅為催化劑組合),結果藉由紫外光光譜術、基質輔助雷射脫附電離質譜、氫譜、X射線光電子能譜術及紅外線光譜術確認。當需要進行聚(2-氯-3-丁基硫噻吩)和不同末端炔間的耦合反應時,我們相信這份研究為一份具啟發性的樣板研究。更重要的是,本研究揭示了在小分子上的過渡金屬催化之碳碳鍵生成反應中未曾被發現過,利用直鏈硫烷作為富電子親電子物種的離去基之可行性。
The achievement in the first chapter is that we successfully prepared a sulfonate ester Paeonol derivative functionalized with amido thiazole core, exhibiting intrinsic anti-inflammatory property as well as higher selectivity index (SI) than commercially available antiviral drug lamivudine (3TC) and our previously synthesized Paeonol sulfonate ester against hepatitis B virus (HBV). Paeonol, a flavonoid-like major active component of a traditional Chinese herbal medicine—Moutan cortex, has been reported to be a potential anti-inflammatory, anticoagulative, antiatherogenic, anti-liver fibrosis agent. With regards to liver fibrosis, one of the etiologies is chronic HBV infection. Excessive inflammation during persistent infection is usually damaging, and linked not only to tumorigenesis, but increased cell proliferation, survival, invasion, angiogenesis and metastasis. Our previous efforts revealed that: (1) the sulfonate ester derivatives of Paeonol presented potent inhibitory effect against HBV under non-cytotoxic conditions, (2) the compound 2-(2-aminothiazol-4-yl)-5-methoxyphenol, an aminothiazole functionalized Paeonol, effectively mitigated acute lung injury in rats by attenuating inflammatory reactions, and (3) the sulfonamide conjugates of thiazole functionalized Paeonol were relatively not cytotoxic to normal cells. On the basis of above information, we herein modified Paeonol sulfonate ester (2-acetyl-5-methoxyphenyl 4-methoxybenzenesulfonate) that was previously found to have potent inhibitory effect on viral gene expression and propagation into amido, imido and aryl urea groups attached thiazole derivatives. To our delight, amido compound 4a (2-(2-benzamidothiazol-4-yl)-5-methoxyphenyl 4-methoxybenzenesulfonate) showed an even higher SI value of 59.14, exceeding those of 3TC and its parent compound (46.13 and 47.75 respectively). The diaryl urea-like compounds 6a-6g, on the other hand, exhibited a broad and strong cytotoxic effect on HepG2 2.2.15 and lung cancer cell lines, which remains to be elucidated for their potential as multiple targeting anti-cancer agents, and whether the high cytoxicity of them to HepG2 2.2.15 essentially originated from disrupting cellular signal transduction (especially acting on NF-B pathway), thereby inhibiting neoplastic transformation of cancer cells and viral gene expression/replication needs further elucidations.
In our second chapter, what we achieved is developing improved reaction conditions for coupling 2-ethynyl-N-methylpyrrole, 2-ethynylfuran, 2-ethynylthiophene and 2-ethynylselenophene with PBTT-Cl (poly(2-chloro-3-butylthiothiophene)) successfully via unprecedented desulfitative Sonogashira-type reaction. Sonogashira reaction, firstly reported in 1975 by Sonogashira et al., has been applied in a wide variety of areas such as the manufacture of pharmaceuticals, natural products, heterocycles and polymers. Traditionally, the leaving groups of electrophiles of this reaction are halides (iodides, bromides and chlorides), triflates, tosylates and sulfonates, but the use of thioorganics such as thioethers and thioesters is reported as well. However, the substrates exploited in desulfitative Sonogashira-type reactions are those containing many highly electronegative atoms (O, N, Cl), which endows them with -electron deficient nature. Moreover, the reactions in literature are carried out under either high temperatures or microwave heating for nearly one hour. Recently, our group discovered an unprecedented desulfitative Sonogashira-type cross-coupling reaction with PBTT-Cl, a -electron rich rather than a commonly exploited -electron deficient substrate, being the starting material. The terminal aryl, hexyl and trimethylsilyl alkynes could replace the butylthio (-SBu) side chains under 80 ℃ for 24 hours, with 10 mol% Pd(PPh3)4 and CuI as catalysts, trimethylamine as base, and toluene as solvent. Nevertheless, our pilot experiments showed that the previous reaction condition was not applicable as the rings of terminal alkynes were N-methylpyrrole and furan. After deeper investigations in the reaction parameters, we successfully developed improved reaction conditions (DMF as solvent and DBN as base, with 10 mol% Pd(PPh3)2Cl2 and 5 mol% CuI as catalyst pair) for coupling PBTT-Cl and five-membered heteroaryl terminal alkynes which are inherently more reactive than phenylacetylene. We confirmed the results through UV spectroscopy, MALDI-TOF mass, 1H NMR analysis, X-ray photoelectron spectroscopy (XPS) and Infrared spectroscopy (IR). We believe that this study provided an inspirational model when “customizing” the cross-coupling condition for different terminal alkynes is needed. Moreover, the study unraveled the feasibility of making n-alkylthiolate a leaving group in a highly -electron rich electrophile, which has not been discovered in transition metal catalyzed C-C bond forming reactions on small molecules.
1-5 References
1. Lin, M.-Y.; Lee, Y.-R.; Chiang, S.-Y.; Li, Y.-Z.; Chen, Y.-S.; Hsu, C.-D. and Liu, Y.-W. Evid.-Based Complementary Altern. Med. 2013, 2013, 207279.
2. Fu, P. K.; Wu, C. L.; Tsai, T. H. and Hsieh, C. L. Evid.-Based Complementary Alternat. Med. 2012, 2012, 837513.
3. Zhao, J. F.; Leu, S. J. J.; Shyue, S. K.; Su, K. H.; Wei, J. and Lee, T. S. Am. J. Chin. Med. 2013, 41, 1079-1096.
4. Kim, S. H.; Kim, S.-A.; Park, M.-K.; Kim, S.-H.; Park, Y.-D.; Na, H.-J.; Kim, H.-M.; Shin, M.-K. and Ahn, K.-S. Int. Immunopharmacol. 2004, 4, 279-287.
5. Yin, J.; Wu, N. S.; Zeng, F. Q.; Cheng, C.; Kang, K. and Yang, H. Acta Histochem. 2013, 115, 835–839.
6. Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho ,Y. Y. and Lau, C. B. S. Phytomedicine 2007, 14, 778-784.
7. Su, S. Y.; Cheng, C. Y.; Tsai, T. H. and Hsieh, C. L. Evid.-Based Complememtary Alternat. Med. 2012, 2012, 932823.
8. Wu, G.-Y.; Qu, Y.-L.; Hao, B.-Y.; Wang, J.-L. and Sun, J.-Y. Chinese Traditional and Herbal Drugs 2019, 50, 1001-1006.
9. Pao, K. C.; Zhao, J. F.; Lee, T. S.; Huang, Y. P.; Han, C. C.; Huang, L. C. S.;Wu, K. H. and Hsu, M. H. Rsc. Adv. 2015, 5, 5652–5656.
10. Huang, T. J.; Chuang, H.; Liang, Y. C.; Lin, H. H.; Horng, J. C.; Kuo, Y. C.; Chen, C. W.; Tsai, F. Y.; Yen, S. C.; Chou, S.C. and Hsu, M. H. Eur. J. Med. Chem. 2015, 90, 428–435.
11. Rosen, T.; Nagel, A. J.; Rizzi, J. P.; Ives, J. L.; Daffeh, J. B.; Ganong, A. H.; Guarino, K.; Heym, J.; McLean, S.; Nowakowski, J. T.; Schmidt, A. W.; Seeger, T. F.; Siok, C. J. and Vincent, L. A. J. Med. Chem. 1990, 33, 2715-2720.
12. Jaen, J. C.; Wise, L. D.; Caprathe, B. W.; Tecle, H.; Bergmeier, S.; Humblet, C. C.; Heffner, T. G.; Meltzer, L. T. and Pugsley, T. A. J. Med. Chem. 1990, 33, 311-317.
13. Van Vliet, L. A.; Rodenhuis, N.; Wikstrom, H.; Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L .D.; Lajiness, M. E.; Huff, R. M. and Svensson, K. J. Med. Chem. 2000, 43, 3549–3557.
14. Fu, P.-K.; Yang, C.-Y.; Huang, S.-C.; Hung, Y.-W.; Jeng, K.-C.; Huang, Y.-P.; Chuang, H.; Huang, N.-C.; Li, J.-P.; Hsu, M.-H. and Chen, J.-K. Molecules 2017, 22, 1605.
15. Tsai, C.-Y.; Kapoor, M.; Huang, Y.-P.; Lin, H.-H.; Liang, Y.-C.; Lin, Y.-L.; Huang, S.-C.; Liao, W.-N.; Chen, J.-K.; Huang, J.-S. and Hsu, M.-H. Molecules 2016, 21, 145.
16. Schinazi, R. F.; Ehteshami, M.; Bassit, L. and Asselah, T. Liver Int. 2018, 38, 102-114.
17. Park, N. H.; Song, I. H. and Chung, Y.-H. Postgrad. Med. J. 2006, 82, 507-515.
18. Bertoletti, A. and Gehring, A. J. PLOS Pathog. 2013, 9, e1003784.
19. Sitia, G.; Aiolfi, R.; Lucia, P. D.; Mainetti, M.; Fiocchi, A.; Mingozzi, F.; Esposito, A.; Ruggeri, Z. M.; Chisari, F. V.; Lannacone, M. and Guidotti, L. G. Proc. Natl. Acad. Sci. USA 2012, 109, E2165-E2172.
20. Kumar, B.; Ramachandran, A. and Waris, G. Hepatitis C Virus and Inflammation, Hepatitis C-From Infection to Cure; IntechOpen, 2018; 19-44.
21. Read, S. A. and Douglas M. W. Cancer Lett. 2014, 345, 174-181.
22. Garuti, L.; Roberti, M.; Bottegoni, G. and Ferraro, M. Curr. Med. Chem. 2016, 23, 1528-1548.
23. Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J. M. and Lynch, M. Mol. Cancer Ther. 2008, 7, 3129-3140.
24. Su, F. and Schneider, R. J. J. Virol. 1996, 70, 4558-4566.
25. Chirillo, P.; Falco, M.; Puri, P. L.; Artini, M.; Balsano, C.; Levrero, M. and Natoli, G. J. Virol. 1996, 70, 641-646.
26. Arsura, M. And Calvin, L. G. Cancer Lett. 2005, 229, 157-169.
27. Tai, D.-I.; Tsai, S.-L.; Chang, Y.-H.; Huang, S.-N.; Chen, T.-C.; Chang, K. S. S. and Liaw, Y.-F. Cancer 2000, 89, 2274-2281.
28. Chen, J. C.-H.; Chuang, H.-Y.; Hsu, F.-T.; Chen, Y.-C.; Chien, Y.-C. and Hwang, J.-J. Oncotarget 2016, 7, 85450-85463.
29. Kong, D.; Zhang, F.; Wei, D.; Zhu, X.; Zhang, X.; Chen, L.; Lu, Y. and Zheng, S. J. Gastroenterol. Hepatol. 2013, 28, 1223-1233.
References
1. Heeger, A. J. Angew. Chem. Int. Ed. 2001, 40, 2591-2611.
2. Roncali, J. Chem. Rev. 1992, 92, 711-738.
3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R.; Mackay, K.; Friend, R. H.; Burn, P. L. and Holmes, A. B. Nature 1990, 347, 539.
4. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W. and Woo, E. P. Science 2000, 290, 2123.
5. Gao, H. and Lian, K. J. Power Sources 2011, 196, 8855-8857.
6. Balasubramanian, A.; Ku, T. C.; Shih, H. P.; Suman, A.; Lin, H. J.; Shih, T. W. and Han, C. C. Polym. Chem. 2014, 5, 5928.
7. Niemi, V. M.; Knuuttila, P.; Österholm, J.-E. and Korvola, J. J. Polymer 1992, 33, 1559-1562.
8. Osaka, I. and McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202-1214.
9. (a) Chen, T. A.; Wu, X. M.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233-244. (b) Loewe, R. S.; Ewbank, P. C.; Liu, J. S.; Zhai, L.; McCullough, R. D. Macromolecules 2001, 34, 4324-4333.
10. Yamamoto, T.; Sato, T.; Iijima, T.; Abe, M.; Fukumoto, H.; Koizumi T.; Usui, M.; Nakamura, Y.; Yagi T.; Tajima, H.; Okada T.; Sasaki S.; Kishida H.; Nakamura, A.; Fukuda T.; Emoto, A.; Ushijima, H.; Kurosaki, C.; Hirota, H. Bull. Chem. Soc. Jpn. 2009, 82, 896–909.
11. Pammer, F.; Guo, F.; Lalancette, R. A.; Jäkle, F. Macromolecules 2012, 45, 6333−6343.
12. Han, C. C. and Balasubramanian, A. J. Polym. Sci. Part A: Pol. Chem. 2008, 46, 5483-5498.
13. Sonogashira, K.; Tohda, Y. and Hagihara, N. Tetrahedron Lett. 1975, 50, 4467-4470.
14. Li, H.; Grasa, G. A. and Colacot, T. J. Org. Lett. 2010, 12, 3332–3335.
15. Gazvoda, M.; Virant, M.; Pinter, B. and Košmrlj, J. Nat. Commun. 2018, 9, 4814.
16. Chinchilla, R. and Nájera, C. Chem. Soc. Rev. 2011, 40, 5084-5121.
17. Modha, S. G.; Mehtazb, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042-5055.
18. Pan, F. and Shi, Z. J. ACS Catal. 2014, 4, 280-288.
19. Dubbaka, S. R. and Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674-7684.
20. Wang, L.; He, W. and Yu, Z. Chem. Soc. Rev. 2013, 42, 599-621.
21. Srogl, J; Allred, G. D. and Liebeskind, L. S. J. J. Am. Chem. Soc. 1997, 119, 12376-12377.
22. Srogl, J.; Liu, W.; Marshall, D and Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 9449-9450.
23. Liebeskind, L. S. and Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
24. Yu, Y. and Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554-3557.
25. Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.-W. and Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132.
26. Lian, Z.; Bhawal, B. N.; Yu, P. and Morandi, B. Science 2017, 356, 1059-1063.
27. (a) Mehta, V. P.; Sharma, A. and Van der Eycken, E. Org. Lett. 2008, 10, 1147-1150. (b) Shook, B. C.; Chakravarty, D. and Jackson, P. F. Tetrahedron Lett. 2009, 50, 1013–1015.
28. Silva, S.; Sylla, B.; Suzenet, F.; Tatibouet, A.; Rauter, A. P. and Rollin, P. Org. Lett. 2008, 10, 853-856.
29. Bakherad, M.; Keivanloo, A. and Mihanparast, S. Synth. Commun. 2010, 40, 179-185.
30. Beletskaya, I. P.; Latyshev, G. V.; Tsvetkov, A. V. and Lukashev, N. V. Tetrahedron Lett. 2003, 44, 5011-5013.
31. Tasker, S. Z.; Standley, E. A. and Jamison, T. F. Nature 2014, 509, 299-309.
32. Cassar, L. J. Organomet. Chem. 1975, 93, 253-257.
33. Krogul, A. and Litwinienko, G. Org. Process Res. Dev. 2015, 19, 2017-2021.
34. Paul, F.; Fischer, J.; Ochsenbein, P. and Osborn, J. A. Organometallics 1998, 17, 2199-2206.
35. Gelman, D and Buchwald, S. L. Angew. Chem. Int. Ed. 2003, 42, 5993-5996.
36. (a) Martin-Matute, B.; Nevado, C.; Cardenas, D. J. and Echavarren, A. M. J. Am. Chem. Soc. 2003, 15, 5757-5766. (b) Kappe, C. O.; Murphree, S. S. and Padwa, A. Tetrahedron 1997, 53, 14179-14 233. (c) Borisova, K. K.; Nikitina, E. V.; Novikov, R. A.; Khrustalev, V. N.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Kuznetsov, M. L.; Zaytsev, V. P.; Varlamov, A. V. and Zubkov, F. I. Chem. Commun. 2018, 54, 2850.
37. Chan, H. S. O.; Kang, E. T.; Neoh, K. G.; Tan, K. L.; Tan, B. T. G. and Lim, Y. K. Synth. Met. 1989, 30, 189-197.
38. Glenis, S.; Benz, M.; LeGoff, E.; Schindler, J. L.; Kannewurf, C. R. and Kanatzidis, M. G. J. Am. Chem. Soc. 1993, 115, 12519-12525.
39. del Valle, M. A.; Ugalde, L.; Diaz, F. R.; Bodini, M. E.; Bernede, J. C. and Chaillou, A. Polym. Bull. 2003, 51, 55-62.