簡易檢索 / 詳目顯示

研究生: 黃映霈
Huang, Ying-Pei
論文名稱: 一、丹皮酚衍生物的合成及其對 B 型肝炎病毒生長抑制作用之探究 二、開發及拓展聚(2-氯-3-丁基硫噻吩)與雜五環炔烴的脫硫基取代反應
I. Synthesis of Paeonol Derivatives and Exploration of Their Inhibitory Effect against Hepatitis B Virus II. Development and Expansion of Unprecedented Desulfitative Substitution Reactions on Poly(2- Chloro-3-butylthiothiophene) with Five-Membered Heteroaromatic Terminal Alkynes
指導教授: 韓建中
Han, Chien-Chung
許銘華
Hsu, Ming-Hua
口試委員: 張家靖
Chang, Chia-Ching
洪嘉呈
Horng, Jia-Cherng
王聖凱
Wang, Sheng-Kai
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 204
中文關鍵詞: 丹皮酚B型肝炎病毒慢性肝發炎去硫基化薗頭耦合反應聚(2-氯-3-丁基硫噻吩)
外文關鍵詞: Paeonol, Hepatitis B Virus, Chronic liver inflammation, Desulfitative Sonogashira reaction, poly(2-chloro-3-butylthiothiophene)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文第一章裡,我們達成的是成功地製備一具抗發炎性質及展現和市售抗病毒藥物—拉米夫定相比,有更高針對性指數 (SI) 的酰胺噻唑丹皮酚磺酸酯類衍生物。丹皮酚為一傳統中草藥—牡丹根皮中主要展現活性的類黃酮化合物,並經報導擁有抗發炎、抗凝血、抗動脈粥狀硬化及抗肝纖維化等特性之分子。而關於肝纖維化,其中一項病因為慢性B型肝炎。伴隨慢性B肝病毒感染,過多、氾濫的發炎反應不僅危險,且和癌化、細胞增生的提升、癌化細胞的存活、癌細胞入侵、不正常血管增生和癌轉移有關。我們過去揭示了第一、丹皮酚的磺酸酯類衍生物在不具細胞毒性的濃度下對B肝病毒有顯著的生長抑制作用;第二、丹皮酚噻唑類化合物—2-(2-氨基噻唑-4-基)-5-甲氧基苯酚在大鼠實驗中可以有效地藉由減低發炎反應來緩和急性肺損傷;第三、丹皮酚的噻唑類磺胺基衍生物對正常細胞株有較低的細胞毒性。因此,奠基於上述的資訊及我們先前的發現,我們把對於B肝病毒基因表現及DNA複製最具抑制活性的丹皮酚磺酸酯類衍生物—2-乙酰基-5-甲氧基苯基4-甲氧基苯磺酸鹽進一步修飾成含酰胺、酰亞胺及芳基脲噻唑的丹皮酚磺酸酯類分子。其中,酰胺噻唑類化合物—4-(2-苯甲酰氨基噻唑-4-基)-5-甲氧基苯基4-甲氧基苯磺酸鹽展現了比拉米夫定和它的製備起始物更高的針對性指數 (分別為59.14、46.13和47.75)。另一方面,二芳基脲噻唑類丹皮酚磺酸酯衍生物則對人類肝、肺癌細胞株皆展現高細胞毒性,其作為多標的抗癌藥物的潛力,或是該類化合物對實驗中使用的HepG2 2.2.15細胞株展現高細胞毒性其實是源自於對細胞訊息傳遞路徑的干擾,藉此同時抑制細胞的癌化(轉化)和病毒基因的表現和複製,有待更多的評估。
    在第二章中,我們成功地開發出較佳的反應條件,透過史無前例的去硫基化薗頭耦合反應 (desulfitative Sonogashira-type cross-coupling) 來進行2-乙炔基N-甲基吡咯、2-乙炔基呋喃、2-乙炔基噻吩、2-乙炔基硒吩和聚(2-氯-3-丁基硫噻吩)間的去硫基耦合。薗頭耦合反應在1975年由Sonogashira教授等人發現,並在藥物、天然物、異圓環及高分子製備上有廣泛的應用。傳統而言,本反應中親電子反應物的離去基為鹵素(碘、溴、氯)、三氟甲磺酸基、甲苯磺酸基和磺酸基,但硫化物如硫醚和硫酯之應用亦被報導過。然而,在去硫基薗頭耦合反應中,反應物卻通常含有具高電負度的氮、氧、氯原子,使得反應物呈現 電子缺乏之性質,除此之外,文獻中的例子通常是在高溫下反應或是微波下進行將近一小時。先前,本實驗室發現了一在聚(2-氯-3-丁基硫噻吩)上進行的去硫基化薗頭耦合反應,其中,末端芳香炔、正六碳末端炔、三甲基乙炔基矽烷可以在80 ℃,以10 mol% 的四(三苯基膦)鈀和碘化亞銅為催化劑、三乙胺為鹼、甲苯為溶劑反應24小時後取代丁基硫烷側鏈。在去硫基耦合反應中雖可見到薗頭反應的例子,當中的反應物卻通常含有具高電負度的氮、氧、氯原子,它們的存在可能弱化了碳硫鍵的強度,除此之外,文獻中的例子通常是在高溫下反應或是微波下進行將近一小時。然而,我們的先導實驗卻揭露了先前的反應條件並不適用在2-乙炔基N-甲基吡咯及2-乙炔基呋喃和聚(2-氯-3-丁基硫噻吩)的耦合上。而在經過對反應參數更深入的檢查後,我們成功地開發出適合套用在聚(2-氯-3-丁基硫噻吩)和異五圓環芳香炔之間的耦合反應條件 (以二甲基甲醯胺為溶劑、1,5-二氮雜二環[4.3.0]壬-5-烯 (DBN) 為鹼,10 mol% 二氯雙(三苯基膦)鈀及 5 mol% 碘化亞銅為催化劑組合),結果藉由紫外光光譜術、基質輔助雷射脫附電離質譜、氫譜、X射線光電子能譜術及紅外線光譜術確認。當需要進行聚(2-氯-3-丁基硫噻吩)和不同末端炔間的耦合反應時,我們相信這份研究為一份具啟發性的樣板研究。更重要的是,本研究揭示了在小分子上的過渡金屬催化之碳碳鍵生成反應中未曾被發現過,利用直鏈硫烷作為富電子親電子物種的離去基之可行性。


    The achievement in the first chapter is that we successfully prepared a sulfonate ester Paeonol derivative functionalized with amido thiazole core, exhibiting intrinsic anti-inflammatory property as well as higher selectivity index (SI) than commercially available antiviral drug lamivudine (3TC) and our previously synthesized Paeonol sulfonate ester against hepatitis B virus (HBV). Paeonol, a flavonoid-like major active component of a traditional Chinese herbal medicine—Moutan cortex, has been reported to be a potential anti-inflammatory, anticoagulative, antiatherogenic, anti-liver fibrosis agent. With regards to liver fibrosis, one of the etiologies is chronic HBV infection. Excessive inflammation during persistent infection is usually damaging, and linked not only to tumorigenesis, but increased cell proliferation, survival, invasion, angiogenesis and metastasis. Our previous efforts revealed that: (1) the sulfonate ester derivatives of Paeonol presented potent inhibitory effect against HBV under non-cytotoxic conditions, (2) the compound 2-(2-aminothiazol-4-yl)-5-methoxyphenol, an aminothiazole functionalized Paeonol, effectively mitigated acute lung injury in rats by attenuating inflammatory reactions, and (3) the sulfonamide conjugates of thiazole functionalized Paeonol were relatively not cytotoxic to normal cells. On the basis of above information, we herein modified Paeonol sulfonate ester (2-acetyl-5-methoxyphenyl 4-methoxybenzenesulfonate) that was previously found to have potent inhibitory effect on viral gene expression and propagation into amido, imido and aryl urea groups attached thiazole derivatives. To our delight, amido compound 4a (2-(2-benzamidothiazol-4-yl)-5-methoxyphenyl 4-methoxybenzenesulfonate) showed an even higher SI value of 59.14, exceeding those of 3TC and its parent compound (46.13 and 47.75 respectively). The diaryl urea-like compounds 6a-6g, on the other hand, exhibited a broad and strong cytotoxic effect on HepG2 2.2.15 and lung cancer cell lines, which remains to be elucidated for their potential as multiple targeting anti-cancer agents, and whether the high cytoxicity of them to HepG2 2.2.15 essentially originated from disrupting cellular signal transduction (especially acting on NF-B pathway), thereby inhibiting neoplastic transformation of cancer cells and viral gene expression/replication needs further elucidations.
    In our second chapter, what we achieved is developing improved reaction conditions for coupling 2-ethynyl-N-methylpyrrole, 2-ethynylfuran, 2-ethynylthiophene and 2-ethynylselenophene with PBTT-Cl (poly(2-chloro-3-butylthiothiophene)) successfully via unprecedented desulfitative Sonogashira-type reaction. Sonogashira reaction, firstly reported in 1975 by Sonogashira et al., has been applied in a wide variety of areas such as the manufacture of pharmaceuticals, natural products, heterocycles and polymers. Traditionally, the leaving groups of electrophiles of this reaction are halides (iodides, bromides and chlorides), triflates, tosylates and sulfonates, but the use of thioorganics such as thioethers and thioesters is reported as well. However, the substrates exploited in desulfitative Sonogashira-type reactions are those containing many highly electronegative atoms (O, N, Cl), which endows them with -electron deficient nature. Moreover, the reactions in literature are carried out under either high temperatures or microwave heating for nearly one hour. Recently, our group discovered an unprecedented desulfitative Sonogashira-type cross-coupling reaction with PBTT-Cl, a -electron rich rather than a commonly exploited -electron deficient substrate, being the starting material. The terminal aryl, hexyl and trimethylsilyl alkynes could replace the butylthio (-SBu) side chains under 80 ℃ for 24 hours, with 10 mol% Pd(PPh3)4 and CuI as catalysts, trimethylamine as base, and toluene as solvent. Nevertheless, our pilot experiments showed that the previous reaction condition was not applicable as the rings of terminal alkynes were N-methylpyrrole and furan. After deeper investigations in the reaction parameters, we successfully developed improved reaction conditions (DMF as solvent and DBN as base, with 10 mol% Pd(PPh3)2Cl2 and 5 mol% CuI as catalyst pair) for coupling PBTT-Cl and five-membered heteroaryl terminal alkynes which are inherently more reactive than phenylacetylene. We confirmed the results through UV spectroscopy, MALDI-TOF mass, 1H NMR analysis, X-ray photoelectron spectroscopy (XPS) and Infrared spectroscopy (IR). We believe that this study provided an inspirational model when “customizing” the cross-coupling condition for different terminal alkynes is needed. Moreover, the study unraveled the feasibility of making n-alkylthiolate a leaving group in a highly -electron rich electrophile, which has not been discovered in transition metal catalyzed C-C bond forming reactions on small molecules.

    Table of Contents Abstract I 摘要 IV Table of Contents VI Figures IX Schemes XVIII Tables XVIII Chapter 1 Synthesis of Paeonol Derivatives and Exploration of Their Inhibitory Activity against Hepatitis B Virus 1 1-1 Literature Review 2 1-1-1 Paeonol, previous works on structural modifications and the bioactivity of derivatives 2 1-1-2 Hepatitis B virus infection and chronic inflammation 6 1-1-3 Research Incentive 11 1-2 Material and Methods 12 1-2-1 Chemistry part 12 1-2-1-1 Chemicals and characterization methods 12 1-2-1-2 Synthetic procedures (see synthetic scheme 1-3-1-1 in section 1-3-1) 13 1-2-2 Biology part 22 1-2-2-1 Cell culture and reagents 22 1-2-2-2 Cell viability assay 22 1-2-2-3 Determination of HBsAg and HBeAg antigen levels 23 1-2-2-4 Real-time PCR analysis of HBV DNA level during treatment 23 1-2-2-5 Statistical analysis and quantification of data 23 1-2-2-6 Giemsa staining and flow cytometry 24 1-3 Results and Discussions 25 1-3-1 Synthesis 25 1-3-2 Cytotoxic effect of the compounds on HepG2 2.2.15 hepatoma cells 26 1-3-3 Antiviral effect of compounds 4a-4h and 5a-5e on HBV viral antigen expression in HepG2 2.2.15 cell culture medium 30 1-3-4 Antiviral effect of compounds 4a-4h and 5a-5e on HBV DNA replication in HepG2 2.2.15 cells 33 1-3-5 Inhibitory effect of compound 4a on HBV viral gene expression 34 1-4 Conclusions and Perspectives 36 1-5 References 37 Chapter 2 Development and Expansion of Unprecedented Desulfitative Substitution Reactions on Poly(2-chloro-3butylthiothiophene) with Five-Membered Heteroaromatic Terminal Alkynes 40 2-1 Literature Review 41 2-1-1 The synthetic methodology of polythiophenes 41 2-1-2 The introduction of -C≡CR as side chains 44 2-1-3 Sonogashira coupling 47 2-1-4 Thioorganics as electrophiles in some palladium catalyzed reactions 49 2-1-5 Research Incentive 54 2-2 Material and Methods 55 2-2-1 Chemicals (listed in alphabetical order) 55 2-2-2 Characterization methods 56 2-2-3 Synthetic procedures 59 2-2-3-1 Preparation of the five-membered heteroaryl terminal alkynes 59 2-2-3-2 Preparation of PBTT-Cl 64 2-3 Results and Discussion 67 2-3-1 Pilot experiments 67 2-3-2 Optimization study 72 2-3-3 Infrared spectroscopy analysis 119 2-3-4 X-ray photoelectron spectroscopy analysis 126 2-4 Conclusions and Perspectives 131 2-5 References 132 Appendix I 135 Appendix II 167 Figures Fig. 1-1-1 1 The structure of Paeonol 2 Fig. 1-1-1 2 The derivatives of Paeonol embodying (A) Schiff-base, (B) heterocyclic alkoxy and (C) sulfonate ester functional groups 3 Fig. 1-1-1 3 The structures of (A) thiazole, (B) 2-aminothiazole, (C) Pramipexole and (D) 2-(2-aminothiazol-4-yl)-5-methoxyphenol 4 Fig. 1-1-1 4 The sulfonyl conjugates of 2-(2-aminothiazol-4-yl)-5-methoxyphenol 5 Fig. 1-1-1 5 The sulfonate ester Paeonol derivatives functionalized with aminothiazole 5 Fig. 1-1-2 1 The mechanisms of HBV virus associated hepatocarcinogenesis. The predominant carcinogenic mechanism of HBV associated HCC is through the process of liver cirrhosis, but direct oncogenic effects of HBV may also contribute. 6 Fig. 1-1-2 2 Schematic representation of mechanisms of HBV replication and inhibition 8 Fig. 1-1-2 3 Inflammation resulting from chronic viral infection contributes to cancer development. Chronic activation of inflammatory signaling can be mediated directly by the virus or indirectly as a result of viral propagation. Direct activation of inflammation is generally mediated by viral proteins capable of activating inflammatory signaling cascades and/or host inflammatory cytokines. HBV and HCV especially, induce significant indirect inflammation as a result of viral replication induced ROS, lipid accumulation and immune recognition. A considerable amount of cell death and resulting hepatocyte regeneration ultimately leads to cancer development. 10 Fig. 1-3-2 1 The structure of Sorafenib 29 Fig. 1-3-3 1 Effects of compounds 4a-4h anf 5a-5e on HBV viral (A) HBsAg and (B) HBeAg secretion. HepG2 2.2.15 cells were treated with compounds 4a-4h and 5a-5e at three concentrations (0.75, 1.5 and 3.0 μM) or DMSO 0.1% (v/v) (control) for 72 h. The cultural medium of each treatment was collected for viral HBsAg and HBeAg EIA analysis. The data was expressed as the mean and the standard deviation of the mean (n = 3, *P < 0.05 vs. untreated cells). 31 Fig. 1-3-3 2 Effect of 4a on cellular morphology and DNA content analysis of HepG2 2.2.15 cells. HepG2 2.2.15 cells were exposed to three noncytotoxic concentrations (0.75, 1.5 and 3.0 M) of 4a. After 72 h of culture, cells were fixed and stained with Giemsa's solution to identify the morphology of HepG2 2.2.15 cells. (A) Based on cellular morphology, inhibition of HepG2 2.2.15 cell growth was not observed in cells treated with 8a. (B) Cell cycle distribution analysis of HepG2 2.2.15 treated with 8a was performed on flow cytometry. 32 Fig. 1-3-4 1 Effects of compounds 4a–4h and 5a-5e on HBV DNA replication in HepG2 2.2.15 cells. Cells were treated at three concentrations (0.75, 1.5 and 3.0 M) or with DMSO 0.1% (v/v) as the control for 72 h, and the culture medium of was collected for viral DNA extraction. The measurement of viral DNA was performed on real-time PCR analysis. The data was expressed as the mean and the standard deviation of the mean (n = 3) (* P < 0.05 vs. untreated cells). 33 Fig. 1-3-4 2 The SI values of compound 2, 4a-4h, 5a-5e and 3TC of inhibition against HBV DNA replication 34 Fig. 1-3-5 1 Inhibitory effect of compound 4a on HBV RNA expression in HepG2 2.2.15 cells. (A) HepG2 2.2.15 cells were treated at three non-cytotoxic concentrations (0.75, 1.5 and 3.0 M) for 72 h and total cellular RNA was extracted and subjected to northern blot analysis. (B) The intensity of each RNA band was quantitated with a densitometer and the relative amount was normalized with GAPDH loading control. The data shown was representative of three replicate experiments (* P < 0.05 vs. untreated cells). 35 Fig. 2-1-1 1 The mechanism of electropolymerization of five-membered heterocycles (X = S)2 41 Fig. 2-1-1 2 The proposed mechanism for oxidative polymerization with the use of FeCl37 42 Fig. 2-1-1 3 The proposed mechanism for the nickel-initiated cross-coupling polymerization8b 43 Fig. 2-1-1 4 The plausible mechanism for a chain-growth cationic polymerization induced by Brønsted acids6 44 Fig. 2-1-2 1 Packing model of HH-P3 (-C≡CR-alkyl)Th in solid state10 45 Fig. 2-1-2 2 Structures of PPA (poly(phenylacetylene)s) and polymers P1-P3 45 Fig. 2-1-3 1 The reaction mechanism proposed by Sonogashira et al.13 47 Fig. 2-1-3 2 The Sonogashira reaction. (a) General representation of Pd/Cu catalyzed and Cu-free Sonogashira reaction. (b) Textbook mechanism for the Pd/Cu catalyzed Sonogashira cross-coupling reaction that is synergistically catalyzed by Pd and Cu. (c) Textbook mechanism for Cu-free Sonogashira reaction. (d) The mechanistic proposal for Cu-free Sonogashira reaction. OA oxidative addition, TM transmetallation, RE reductive elimination (cis–trans isomerization steps are omitted for clarity)15 48 Fig. 2-1-4 1 The organosulfur electrophiles utilized in transition metal catalyzed C-C bond-forming reactions when the nucleophiles are Grignard reagents 49 Fig. 2-1-4 2 Metal-catalyzed cross-coupling with tetramethylenesulfonium salts21 50 Fig. 2-1-4 3 Nickel-catalyzed cross-coupling reactions of thioglycolic acids with organozinc reagents (a) and the transmetallation proceeded from an external zinc reagent to nickel, rather than from the internal organozinc R group bound to the thioglycolate (b)22 50 Fig. 2-1-4 4 Copper carboxylate mediated thiol ester-boronic acid cross-coupling23,24 51 Fig. 2-1-4 5 Pepitidyl ketones from peptidyl thiol esters and boronic acids25 51 Fig. 2-1-4 6 Palladium catalyzed carbon-sulfur bond methathesis26 51 Fig. 2-1-4 7 Desulfitative Sonogashira-type cross-coupling of heteroaryl thioethers with terminal alkynes27 52 Fig. 2-1-4 8 Cooperative catalysis of copper for the Sonogashira-type desulfitative reaction on cyclic thionocarbamates (oxazolinethiones and oxazolidinethiones) and the proposed mechanism.28 53 Fig. 2-1-4 9 Palladium-catalyzed Sonogashira-type cross-coupling of sulfonyl chlorides and terminal alkynes and its proposed mechanism19 53 Fig. 2-3-1 1 The 1H NMR spectra of 2-ethynyl-N-methylpyrrole (top; the peak from -CH3 (4.27 ppm) on CH3NO2 was used to estimate the concentration of product solution), PBTT-Cl (middle), and product after the 24-hour reaction with 10 mol% Pd(PPh3)4 and 10 mol% CuI as catalysts, TEA as base and solvent and toluene as solvent under 80 ℃ (bottom). 67 Fig. 2-3-1 2 The MALDI-TOF mass spectrum of product after the coupling between 2-ethynyl-N-methylpyrrole and PBTT-Cl under the reaction condition illustrated in Fig. 2-3-1-1. The nomenclature shown will be explained later in section 2-3-2. 68 Fig. 2-3-1 3 The 1H NMR spectra of 2-ethynylfuran (top; the peak from -CH3 (4.27 ppm) on CH3NO2 was used to estimate the concentration of product solution.), PBTT-Cl (middle), and product afforded after the 24-hour reaction with 10 mol% Pd(PPh3)4 and 10 mol% CuI as catalysts, TEA as base and solvent and toluene as solvent under 80 ℃ (bottom). The increase and decrease in the integral value were indicated with filled arrows. 69 Fig. 2-3-1 4 The MALDI-TOF mass spectrum of product after the coupling between 2-ethynylfuran and PBTT-Cl under the reaction condition illustrated in Fig. 2-3-1-3. The nomenclature shown will be explained in section 2-3-2. 70 Fig. 2-3-2 1 The 1H NMR spectra of PBTT-Cl (top) and products afforded after catalysis with 10 mol% Pd(PPh3)2Cl2 (middle) and 10 mol% Ni(PPh3)2Cl2 (bottom). In both conditions were THF employed as solvent, TEA as base/solvent under reflux for 12 hours (see the details in entry 1 and 2 in Table 2-3-2-1). 75 Fig. 2-3-2 2 The structures of molecules 7-1, 7-Cl-1 and 7’-1 appearing in the MALDI-TOF mass spectrum shown in Fig. 2-3-2-3. The mechanism of laser induced C-Cl bond cleavage is shown in Fig. 2-3-2-4. 77 Fig. 2-3-2 3 The MALDI-TOF mass spectra of the product in entry 1 with Pd(PPh3)2Cl2 as catalyst (Table 2-3-2-1) 78 Fig. 2-3-2 4 The laser induced C-Cl bond cleavage for the generation of molecule 7-1from 7-Cl-1 in Figure 2-3-2-2 (a) 79 Fig. 2-3-2 5 The plausible mechanism of the formation of R-1275 and R-1445 upon laser irradiation 79 Fig. 2-3-2 6 The enlargements of peaks corresponding to molecules 7 (top), 7-1 (middle), 7-Cl and 7-2 (bottom) in the MALDI-TOF mass spectrum of product in entry 1 (Table 2-3-2-1), and the predicted isotope patterns for the molecules above 80 Fig. 2-3-2 7 The enlargements of peaks corresponding to molecules 8 (top), 8-1 (middle), 8-Cl and 8-2 (bottom) in the MALDI-TOF mass spectrum of product in entry 1 (Table 2-3-2-1), and the predicted isotope patterns for the molecules above 83 Fig. 2-3-2 8 The MALDI-TOF mass spectra of product after the reaction with 10 mol% Ni(PPh3)2Cl2 as catalyst, 3 mL TEA as base and 3 mL THF as solvent under reflux for 12 hours (entry 2, Table 2-3-2-1) 86 Fig. 2-3-2 9 The enlargements and predicted patterns of peaks corresponding to molecules 7-Cl-3 (upper) and 8-Cl-3 (lower) in the MALDI-TOF mass spectra shown in Fig. 2-3-2-8 87 Fig. 2-3-2 10 The mechanisms of formation and predicted isotope patterns for rearranged molecules R-1259, R-1307, R-1347 and R-1429 in the MALDI-TOF mass spectra shown in Fig. 2-3-2-8 88 Fig. 2-3-2 11 The MALDI-TOF mass spectra of product after the reaction with 10 mol% Pd(PPh3)2Cl2 as catalyst, 3 equiv TEA as base and 10 mL THF as solvent under reflux for 3 hours (entry 3, Table 2-3-2-1) 90 Fig. 2-3-2 12 The MALDI-TOF mass spectra of product after the reaction with 10 mol% Pd(PPh3)2Cl2 as catalyst, 3 equiv DBU as base and 10 mL THF as solvent under reflux for 3 hours (entry 4, Table 2-3-2-1) 90 Fig. 2-3-2 13 The MALDI-TOF mass spectra of product after the reaction with 10 mol% Pd(PPh3)2Cl2 as catalyst, 3 equiv DBN as base and 10 mL THF as solvent under reflux for 3 hours (entry 5, Table 2-3-2-1) 90 Fig. 2-3-2 14 The correlation between max in UV spectroscopy and substitution degree of products from entry 3 to 8 (Table 2-3-2-1) 91 Fig. 2-3-2 15 The MALDI-TOF mass spectra of experiments in entry 7 (top) and entry 8 (bottom) with 3equiv DBU and DBN as bases respectively 92 Fig. 2-3-2 16 The full MALDI-TOF mass spectrum (A) and that of products having seven (B) and eight (C) repeat units from the experiment in which 10 mol% Pd(PPh3)2Cl2 was used as catalyst, 3 equiv DBN as base and 15 mL DMF as solvent under 80 ℃ for 24 hours (entry 14, Table 2-3-2-1) 94 Fig. 2-3-2 17 The enlargements of peaks corresponding to molecules 7 (top), 7-1 (middle) and 7-2 (bottom) in the MALDI-TOF mass spectrum of product in entry 14 (Table 2-3-2-1), and the predicted isotope patterns for the molecules listed above 95 Fig. 2-3-2 18 The MALDI-TOF mass spectra of products from 6-hour (upper two) and 24-hour (lower two) experiments where DMF was employed as solvent, 10 mol% Pd(PPh3)2Cl2 as catalyst and 3 equiv DBN as base under 80 ℃. A bit higher ratio of one side chain substituted product to its non-substituted starting molecule (the molecules 7-1 to 7, 7’-1 to 7’, 8-1 to 8 and 8’-1 to 8’) was observed in 24-hour trial. 106 Fig. 2-3-2 19 The MALDI-TOF spectra of experiments in entry 15 (top) and 16 (bottom). It can be seen clearly that the ratio of molecule 7-1 to 7 became higher with the aid of 5 mol% CuI. The same was true for the ratio of 7’-1 to 7’. 107 Fig. 2-3-2 20 The MALDI-TOF mass spectra of the experiments in entry 21without CuI co-catalyst (top, Table 2-3-2-1) and entry22 with 5 mol% CuI co-catalyst (bottom, Table 2-3-2-1). Both reactions were performed in DMF where 10 mol% Pd(PPh3)2Cl2 was used, DBN as base under 60 ℃ for 15 hours. 109 Fig. 2-3-2 21 The 1H NMR spectra of PBTT-Cl (top) and the product P-NMePy (bottom) 111 Fig. 2-3-2 22 The MALDI-TOF spectrum of the product P-NMePy. The enlargements of peaks, speculated molecules for the peaks, and theoretical isotope patterns for the molecules can be referred to Fig. 2-3-2-23 111 Fig. 2-3-2 23 The enlargements of peaks corresponding to molecules 7 (top), 7-N1 (middle) and 7-N2 (bottom) in the MALDI-TOF mass spectrum of product PNMePy (Table 2-3-2-2), and the predicted isotope patterns for the molecules listed above 112 Fig. 2-3-2 24 The MALDI-TOF mass result of product P-Furan 115 Fig. 2-3-2 25 The putative routes for deriving the molecules with M+1 value of 1209 from molecule 6’-2 (A) and 6-1 (B), and with M+1 value of 1211 (C) 116 Fig. 2-3-2 26 The enlargements together with structural assumptions and theoretical isotope patterns corresponding to peaks presented in the mass spectrum of product P-Furan 117 Fig. 2-3-2 27 The full (upper left), enlarged (upper right) MALDI-TOF mass spectra of product P-Se, and the predicted isotope pattern for molecule 7-Se1 119 Fig. 2-3-3 1 The IR spectrum of PBTT-Cl 120 Fig. 2-3-3 2 The IR spectra of PBTT-Cl and product afforded after the cross-coupling between PBTT-Cl and 2-ethynylthiophene with substitution degree of 32 % (entry 16; Table 2-3-2-1) 121 Fig. 2-3-3 3 The IR spectra of PBTT-Cl and PNMePy (substitution degree: 6 %) 122 Fig. 2-3-3 4 The IR spectra of PBTT-Cl and PFuran (substitution degree: 13 %) 122 Fig. 2-3-3 5 The IR spectra of PBTT-Cl and PSe (substitution degree: 10 %) 123 Fig. 2-3-4 1 The survey spectrum of Product_entry 16 (upper; the signals of silicon and oxygen atoms were from SiO2 wafer), and the chemical state spectra of S2p of PBTT-Cl (lower left) and the Product_entry 16 (lower right) 127 Fig. 2-3-4 2 The survey (upper; the signals of silicon and oxygen atoms were from SiO2 wafer) and curve-fitted chemical state spectra of S2p (lower left) and N1s (lower right) of PNMePy 128 Fig. 2-3-4 3 The survey (upper; the signals of silicon and oxygen atoms were from SiO2 wafer) and curve-fitted chemical state spectra of S2p (lower left) and O1s (lower right) of PFuran 129 Fig. 2-3-4 4 The survey (upper; the signals of silicon and oxygen atoms were from SiO2 wafer) and curve-fitted chemical state spectra of S2p (lower left) and Se3d (lower right) of PSe 130 Schemes Scheme 1-3-1 1 The synthetic route for preparation of amide 4a-4h, imide 5a-5c and urea 6a-6g derivatives. 25 Scheme 2-1-2 1 The desulfitative Sonogashira-type cross-coupling reaction on PBTT-Cl 46 Scheme 2-1-3 1 The plausible mechanism for the reduction of PdⅡ to Pd0 with TEA 48 Scheme 2-1-5 1 Desulfitative substitution reactions on PBTT-Cl with 2-ethynyl-N-methylpyrrole, 2-ethynylfuranm 2-ethynylthiophene and 2-ethynyl selenophene 54 Scheme 2-3-2 1 The calculation of substitution degree with 1H NMR analysis was assessed by assuming the amount of repeat units without substitution as X, and that of repeat units undergoing substitution as Y. 76 Scheme 2-3-2 2 The proposed mechanism for the laser induced formation of molecules R-1255, R-1275, R-1293 and R-1445 presented in Fig. 2-3-2-16 (B) and (C) 104 Tables Table 1-3-2 1 Cytotoxic effect of compounds 8a–9e on HepG2 2.2.15 cells, inhibition potential of HBV viral antigen and DNA replication after 72 h treatmenta 27 Table 1-3-2 2 The cytotoxicity (TC50; M) of compounds 6a-6g on HepG2 2.2.15, two human liver cancer cell lines HepG2 and Huh7, and human lung cancer cell lines A549, H23, H838, H2087 and H226 28 Table 2-1-2 1 Polymerization conditions and results for P1-P3a, 12 45 Table 2-3-2 1 The optimization study of reaction condition with 2-ethynylthiophene 72 Table 2-3-2 2 The exploration of reaction with three other substrates 110 Table 2-3-3 1 The summary of IR absorption information of PBTT-Cl, Product_entry 16, PNMePy, PFuran and PSe 124 Table 2-3-4 1 The substitution degree calculated from XPS and 1H NMR analyses of PBTT-Cl and the other four representative samples 130

    1-5 References
    1. Lin, M.-Y.; Lee, Y.-R.; Chiang, S.-Y.; Li, Y.-Z.; Chen, Y.-S.; Hsu, C.-D. and Liu, Y.-W. Evid.-Based Complementary Altern. Med. 2013, 2013, 207279.
    2. Fu, P. K.; Wu, C. L.; Tsai, T. H. and Hsieh, C. L. Evid.-Based Complementary Alternat. Med. 2012, 2012, 837513.
    3. Zhao, J. F.; Leu, S. J. J.; Shyue, S. K.; Su, K. H.; Wei, J. and Lee, T. S. Am. J. Chin. Med. 2013, 41, 1079-1096.
    4. Kim, S. H.; Kim, S.-A.; Park, M.-K.; Kim, S.-H.; Park, Y.-D.; Na, H.-J.; Kim, H.-M.; Shin, M.-K. and Ahn, K.-S. Int. Immunopharmacol. 2004, 4, 279-287.
    5. Yin, J.; Wu, N. S.; Zeng, F. Q.; Cheng, C.; Kang, K. and Yang, H. Acta Histochem. 2013, 115, 835–839.
    6. Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho ,Y. Y. and Lau, C. B. S. Phytomedicine 2007, 14, 778-784.
    7. Su, S. Y.; Cheng, C. Y.; Tsai, T. H. and Hsieh, C. L. Evid.-Based Complememtary Alternat. Med. 2012, 2012, 932823.
    8. Wu, G.-Y.; Qu, Y.-L.; Hao, B.-Y.; Wang, J.-L. and Sun, J.-Y. Chinese Traditional and Herbal Drugs 2019, 50, 1001-1006.
    9. Pao, K. C.; Zhao, J. F.; Lee, T. S.; Huang, Y. P.; Han, C. C.; Huang, L. C. S.;Wu, K. H. and Hsu, M. H. Rsc. Adv. 2015, 5, 5652–5656.
    10. Huang, T. J.; Chuang, H.; Liang, Y. C.; Lin, H. H.; Horng, J. C.; Kuo, Y. C.; Chen, C. W.; Tsai, F. Y.; Yen, S. C.; Chou, S.C. and Hsu, M. H. Eur. J. Med. Chem. 2015, 90, 428–435.
    11. Rosen, T.; Nagel, A. J.; Rizzi, J. P.; Ives, J. L.; Daffeh, J. B.; Ganong, A. H.; Guarino, K.; Heym, J.; McLean, S.; Nowakowski, J. T.; Schmidt, A. W.; Seeger, T. F.; Siok, C. J. and Vincent, L. A. J. Med. Chem. 1990, 33, 2715-2720.
    12. Jaen, J. C.; Wise, L. D.; Caprathe, B. W.; Tecle, H.; Bergmeier, S.; Humblet, C. C.; Heffner, T. G.; Meltzer, L. T. and Pugsley, T. A. J. Med. Chem. 1990, 33, 311-317.
    13. Van Vliet, L. A.; Rodenhuis, N.; Wikstrom, H.; Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L .D.; Lajiness, M. E.; Huff, R. M. and Svensson, K. J. Med. Chem. 2000, 43, 3549–3557.
    14. Fu, P.-K.; Yang, C.-Y.; Huang, S.-C.; Hung, Y.-W.; Jeng, K.-C.; Huang, Y.-P.; Chuang, H.; Huang, N.-C.; Li, J.-P.; Hsu, M.-H. and Chen, J.-K. Molecules 2017, 22, 1605.
    15. Tsai, C.-Y.; Kapoor, M.; Huang, Y.-P.; Lin, H.-H.; Liang, Y.-C.; Lin, Y.-L.; Huang, S.-C.; Liao, W.-N.; Chen, J.-K.; Huang, J.-S. and Hsu, M.-H. Molecules 2016, 21, 145.
    16. Schinazi, R. F.; Ehteshami, M.; Bassit, L. and Asselah, T. Liver Int. 2018, 38, 102-114.
    17. Park, N. H.; Song, I. H. and Chung, Y.-H. Postgrad. Med. J. 2006, 82, 507-515.
    18. Bertoletti, A. and Gehring, A. J. PLOS Pathog. 2013, 9, e1003784.
    19. Sitia, G.; Aiolfi, R.; Lucia, P. D.; Mainetti, M.; Fiocchi, A.; Mingozzi, F.; Esposito, A.; Ruggeri, Z. M.; Chisari, F. V.; Lannacone, M. and Guidotti, L. G. Proc. Natl. Acad. Sci. USA 2012, 109, E2165-E2172.
    20. Kumar, B.; Ramachandran, A. and Waris, G. Hepatitis C Virus and Inflammation, Hepatitis C-From Infection to Cure; IntechOpen, 2018; 19-44.
    21. Read, S. A. and Douglas M. W. Cancer Lett. 2014, 345, 174-181.
    22. Garuti, L.; Roberti, M.; Bottegoni, G. and Ferraro, M. Curr. Med. Chem. 2016, 23, 1528-1548.
    23. Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J. M. and Lynch, M. Mol. Cancer Ther. 2008, 7, 3129-3140.
    24. Su, F. and Schneider, R. J. J. Virol. 1996, 70, 4558-4566.
    25. Chirillo, P.; Falco, M.; Puri, P. L.; Artini, M.; Balsano, C.; Levrero, M. and Natoli, G. J. Virol. 1996, 70, 641-646.
    26. Arsura, M. And Calvin, L. G. Cancer Lett. 2005, 229, 157-169.
    27. Tai, D.-I.; Tsai, S.-L.; Chang, Y.-H.; Huang, S.-N.; Chen, T.-C.; Chang, K. S. S. and Liaw, Y.-F. Cancer 2000, 89, 2274-2281.
    28. Chen, J. C.-H.; Chuang, H.-Y.; Hsu, F.-T.; Chen, Y.-C.; Chien, Y.-C. and Hwang, J.-J. Oncotarget 2016, 7, 85450-85463.
    29. Kong, D.; Zhang, F.; Wei, D.; Zhu, X.; Zhang, X.; Chen, L.; Lu, Y. and Zheng, S. J. Gastroenterol. Hepatol. 2013, 28, 1223-1233.
    References
    1. Heeger, A. J. Angew. Chem. Int. Ed. 2001, 40, 2591-2611.
    2. Roncali, J. Chem. Rev. 1992, 92, 711-738.
    3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R.; Mackay, K.; Friend, R. H.; Burn, P. L. and Holmes, A. B. Nature 1990, 347, 539.
    4. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W. and Woo, E. P. Science 2000, 290, 2123.
    5. Gao, H. and Lian, K. J. Power Sources 2011, 196, 8855-8857.
    6. Balasubramanian, A.; Ku, T. C.; Shih, H. P.; Suman, A.; Lin, H. J.; Shih, T. W. and Han, C. C. Polym. Chem. 2014, 5, 5928.
    7. Niemi, V. M.; Knuuttila, P.; Österholm, J.-E. and Korvola, J. J. Polymer 1992, 33, 1559-1562.
    8. Osaka, I. and McCullough, R. D. Acc. Chem. Res. 2008, 41, 1202-1214.
    9. (a) Chen, T. A.; Wu, X. M.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233-244. (b) Loewe, R. S.; Ewbank, P. C.; Liu, J. S.; Zhai, L.; McCullough, R. D. Macromolecules 2001, 34, 4324-4333.
    10. Yamamoto, T.; Sato, T.; Iijima, T.; Abe, M.; Fukumoto, H.; Koizumi T.; Usui, M.; Nakamura, Y.; Yagi T.; Tajima, H.; Okada T.; Sasaki S.; Kishida H.; Nakamura, A.; Fukuda T.; Emoto, A.; Ushijima, H.; Kurosaki, C.; Hirota, H. Bull. Chem. Soc. Jpn. 2009, 82, 896–909.
    11. Pammer, F.; Guo, F.; Lalancette, R. A.; Jäkle, F. Macromolecules 2012, 45, 6333−6343.
    12. Han, C. C. and Balasubramanian, A. J. Polym. Sci. Part A: Pol. Chem. 2008, 46, 5483-5498.
    13. Sonogashira, K.; Tohda, Y. and Hagihara, N. Tetrahedron Lett. 1975, 50, 4467-4470.
    14. Li, H.; Grasa, G. A. and Colacot, T. J. Org. Lett. 2010, 12, 3332–3335.
    15. Gazvoda, M.; Virant, M.; Pinter, B. and Košmrlj, J. Nat. Commun. 2018, 9, 4814.
    16. Chinchilla, R. and Nájera, C. Chem. Soc. Rev. 2011, 40, 5084-5121.
    17. Modha, S. G.; Mehtazb, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042-5055.
    18. Pan, F. and Shi, Z. J. ACS Catal. 2014, 4, 280-288.
    19. Dubbaka, S. R. and Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674-7684.
    20. Wang, L.; He, W. and Yu, Z. Chem. Soc. Rev. 2013, 42, 599-621.
    21. Srogl, J; Allred, G. D. and Liebeskind, L. S. J. J. Am. Chem. Soc. 1997, 119, 12376-12377.
    22. Srogl, J.; Liu, W.; Marshall, D and Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 9449-9450.
    23. Liebeskind, L. S. and Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
    24. Yu, Y. and Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554-3557.
    25. Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.-W. and Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132.
    26. Lian, Z.; Bhawal, B. N.; Yu, P. and Morandi, B. Science 2017, 356, 1059-1063.
    27. (a) Mehta, V. P.; Sharma, A. and Van der Eycken, E. Org. Lett. 2008, 10, 1147-1150. (b) Shook, B. C.; Chakravarty, D. and Jackson, P. F. Tetrahedron Lett. 2009, 50, 1013–1015.
    28. Silva, S.; Sylla, B.; Suzenet, F.; Tatibouet, A.; Rauter, A. P. and Rollin, P. Org. Lett. 2008, 10, 853-856.
    29. Bakherad, M.; Keivanloo, A. and Mihanparast, S. Synth. Commun. 2010, 40, 179-185.
    30. Beletskaya, I. P.; Latyshev, G. V.; Tsvetkov, A. V. and Lukashev, N. V. Tetrahedron Lett. 2003, 44, 5011-5013.
    31. Tasker, S. Z.; Standley, E. A. and Jamison, T. F. Nature 2014, 509, 299-309.
    32. Cassar, L. J. Organomet. Chem. 1975, 93, 253-257.
    33. Krogul, A. and Litwinienko, G. Org. Process Res. Dev. 2015, 19, 2017-2021.
    34. Paul, F.; Fischer, J.; Ochsenbein, P. and Osborn, J. A. Organometallics 1998, 17, 2199-2206.
    35. Gelman, D and Buchwald, S. L. Angew. Chem. Int. Ed. 2003, 42, 5993-5996.
    36. (a) Martin-Matute, B.; Nevado, C.; Cardenas, D. J. and Echavarren, A. M. J. Am. Chem. Soc. 2003, 15, 5757-5766. (b) Kappe, C. O.; Murphree, S. S. and Padwa, A. Tetrahedron 1997, 53, 14179-14 233. (c) Borisova, K. K.; Nikitina, E. V.; Novikov, R. A.; Khrustalev, V. N.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Kuznetsov, M. L.; Zaytsev, V. P.; Varlamov, A. V. and Zubkov, F. I. Chem. Commun. 2018, 54, 2850.
    37. Chan, H. S. O.; Kang, E. T.; Neoh, K. G.; Tan, K. L.; Tan, B. T. G. and Lim, Y. K. Synth. Met. 1989, 30, 189-197.
    38. Glenis, S.; Benz, M.; LeGoff, E.; Schindler, J. L.; Kannewurf, C. R. and Kanatzidis, M. G. J. Am. Chem. Soc. 1993, 115, 12519-12525.
    39. del Valle, M. A.; Ugalde, L.; Diaz, F. R.; Bodini, M. E.; Bernede, J. C. and Chaillou, A. Polym. Bull. 2003, 51, 55-62.

    QR CODE