簡易檢索 / 詳目顯示

研究生: 尚 湖
Sahu, Rama Shanker
論文名稱: 石墨材料固定鐵/鎳雙金屬奈米粒子增強還原脫氯
Graphitic materials immobilized with Fe/Ni bimetallic nanoparticles for enhanced reductive dechlorination
指導教授: 董瑞安
Doong, Ruey-An
口試委員: 呂世源
施养信
連興隆
Shih, Yang-Hsin
Lien, Hsing-Lung
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 188
中文關鍵詞: 脫氯鐵/鎳
外文關鍵詞: NZVI, Dechclorination, TCE
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下水處理是環境科學領域之整體目標與專注方向。農業中使用過量化學藥劑、肥料及不適當的工業廢棄物處理導致許多環境污染,為現今受到關注且影響到千萬人的健康的污染物。三氯乙烯是其中一種因意外釋放到環境中並存在於地下水當中的 DNAPL (重質非水相液體);另外,處理受污染的地下水是非常昂貴的,在過去的幾十年中,科學家們使用奈米等級的零價鐵處理水汙染並有著巨大的進展。鐵是一種天然、豐富且成本低廉的材料,這使得它比其他的奈米材料更有利。使用零價鐵降解有害的氯化烴-三氯乙烯(TCE)是最可行的技術之一。由於其特殊的材料性質和天然豐富度,研究人員對於奈米鐵處理氯化烴的應用具有濃厚的興趣。我們觀察到當添加第二種金屬作為催化劑後, TCE 降解效率有著大幅的增強。然而鐵處理系統中最常見的缺點,包括聚集、副產品的累積以及因反應時間的增長而造成的效率降低,影響了材料的性能及可續性。為了克服還原材料的聚集且穩定這些奈米粒子,我們迫切地需要找到合適的介面基質。鑒於此,本研究專注於利用奈米雙金屬粒子及其石墨碳奈米複合材料的製備。
    目前的研究包括對合成奈米零價鐵、雙金屬奈米粒子、氧化石墨烯、還原氧化石墨烯、摻雜還原氧化石墨烯、石墨烯氮化碳和摻雜雙金屬奈米粒子的表面上的詳細研究;以及此奈米複合材料在環境領域相關應用。在合成新型高效雙金屬鐵/鎳奈米粒子,我們使用一種簡易的化學還原方法。其中,我們探討以石墨為基材的重要性質,包括表面積、穩定性、電導率、電子傳遞以及對水的限制能力,而這些具有影響的碳基材與雙金屬奈米粒子的特性被用於 TCE 的脫氯。


    Groundwater and subsurface water treatment is the overall aim and focus of the environmental sciences. Excess use of chemicals and fertilizers in agriculture and inappropriate disposal of industrial waste are the major pollutants of concern, which affects the health of millions of people. Trichloroethylene is one of the notorious DNAPL (dense non-aqueous phase liquids) found in the ground water subsurface due to irregular and accidental release into the environment. Treatment of contaminated water in the subsurface and groundwater is tedious and expensive. Last few decades are the witnessed the use of nanoscale zero-valent iron for the treatment of toxic water and tremendous enhancement have been observed. Iron is naturally abundant and low cost, which make it more advantageous material among other nanomaterials. Application of in situ remediation of TCE (Trichloroethylene), a mostly hazardous chlorinated hydrocarbon, using zero-valent iron, is one of the most feasible technology. Due to its special physico-chemical properties and natural abundance, researchers have been interested in studying applications of nanoscale iron for the treatment of chlorinated hydrocarbons. However, enhanced TCE degradation have been observed after the addition of secondary metal as catalyst. The most common disadvantages of iron-based treatment system, include aggregation, accumulation of undesirable byproducts and a decrease in reactivity overlong time periods. To overcome the agglomeration of reductive materials and to stabilize these nanoparticles, it is urgent to find some suitable interface matrix. Keeping all this in view, the present study has been focused on fabrication of bimetallic nanoparticles with NZVI as a component and their nanocomposites with graphitic carbon.
    Current research includes the detailed study to synthesis NZVI, bimetallic nanoparticles, graphene oxide, reduced graphene oxide, doped reduce graphene oxide, graphitic carbon nitride and immobilization of bimetallic nanoparticle onto the surface of respective matrixes. As synthesized nanocomposites were characterized and employed for the environmental applications. A facile chemical reduction method for the synthesis of novel and efficient bimetallic Fe/Ni nanoparticles. We have focused on important properties of graphitic matrix including surface area, stability, conductivity, electron transfer and also restricting ability toward the water. These influential properties of carbon matrix and bimetallic nanoparticles are exploited for the dechlorination of TCE.

    Contents Acknowledgement i Abstract iii 摘要 iv Abbreviations, units and symbols v List of figures and tables xiv Chapter 1 1 Introduction 1 1.1 Introduction 3 1.1.1 Environmental issues 3 1.1.2 Chlorinated hydrocarbons 3 1.2 Dechlorination technologies 7 1.3 Reductive materials for dechlorination 10 1.3.1 Zero-valent iron 11 1.3.2 Bimetallic nanoparticles 15 1.3.3 Factors influencing the reactivity of reducing metal 17 1.4 Functionalization of bimetallic nanoparticle with matrix 18 1.5 Graphitic material as the support 25 1.5.1 Activated carbon 25 1.5.2 Graphene based matrices 26 1.5.3 Carbon nitride 30 1.6 Motivation 34 1.7 Aim and Objectives 36 1.8 Experimental plan 37 Chapter 2 41 Experimental details 41 2.1. Introduction 43 2.2. Experimental Section 43 2.2.1. Materials 43 2.2.2. Sample Preparation 43 2.2.2.1. Synthesis of NZVI and bimetallic nanocomposites 43 2.2.2.2. Synthesis of graphene oxide (GO) 44 2.2.2.3. Synthesis of reduced graphene oxide (rGO) 44 2.2.2.4. Synthesis of boron doped reduced graphene oxide (B-rGO) 45 2.2.2.5. Synthesis of graphitic carbon nitride (g-C3N4) 46 2.2.2.6. Synthesis of rGO/Fe/Ni nanocomposites 46 2.2.2.7. Synthesis of B-rGO/Fe/Ni nanocomposites 47 2.2.2.8. Synthesis of Ni/Fe@g-C3N4 nanocomposite 48 2.3. Characterization Techniques 48 2.3.1. Scanning Electron Microscopy 48 2.3.2. Scanning Transmission Electron Microscopy 48 2.3.3. Transmission Electron Microscopy (TEM) 49 2.3.4. X-ray Diffraction 49 2.3.5. X-ray absorption near edge spectroscopy 49 2.3.6. Raman Spectroscopy 50 2.3.7. BET analysis 50 2.3.8. X-ray photoelectron spectroscopy analysis (XPS) 50 2.3.9. Electron probe microanalysis (EPMA) 51 2.3.10. Thermogravimetric Analysis (TGA) 51 2.4. Electrochemical Characterization 51 2.4.1. Cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS) 51 2.4.2. Oxygen reduction reaction (ORR) analysis 51 2.5. TCE dechlorination 52 2.6. Gas Chromatography 53 2.7. Kinetics and rate of reaction 54 2.8. Conclusions 54 Chapter 3 55 Hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles 55 3.1. Introduction 58 3.2 Experimental procedure 59 3.2.1 Synthesis of rGO/Fe/Ni nanocomposites 59 3.3 Results and discussion 60 3.3.1 Physico-chemical properties 60 3.3.2 Electrochemical properties 66 3.3.3 TCE dechlorination 70 3.3.4 Effect of Ni loading and initial TCE concentration 76 3.3.5 Effect of dissolved organic matters 78 3.4 Conclusion 80 Chapter 4 83 Rapid dechlorination of trichloroethylene using bimetallic Fe/Ni immobilized boron doped reduced graphene oxide 83 4.1 Introduction 86 4.2 Experimental procedure 88 4.2.1 Synthesis of boron doped reduced graphene oxide 88 4.3 Results and discussion 88 4.3.1 Characterization 88 4.3.2 Dechlorination of TCE by B-rGO immobilized Fe/Ni nanoparticles 98 4.3.3 Effect of pH and initial TCE concentration on dechlorination 101 4.3.4 Stability and reusability of B-rGO/Fe/Ni 103 4.4 Conclusions 107 Chapter 5 109 Expending electron transport and masking properties of g-C3N4 in Fe/Ni nanoparticles: Dual applications for enhanced TCE dechlorination and successive ORR activity 109 5.1. Introduction 112 5.2. Experimental procedure 114 5.2.1. Preparation of Fe/Ni@g-C3N4 nanocomposites 114 5.2.2. Dechlorination analysis procedure 114 5.3. Results and discussion 115 5.3.1. Characterization of layered g-C3N4 115 5.3.2. Characterization of Ni/Fe@g-C3N4 nanocomposite 118 5.3.3. Electrochemical analysis of Ni/Fe@g-C3N4 nanocomposite 125 5.3.4. TCE dechlorination 126 5.3.4.1. TCE degradation using various nanomaterials 126 5.3.4.2 Effect of applied voltage on TCE dechlorination 127 5.3.4.3. Effect of Ni loading on TCE dechlorination 128 5.3.4.4. Effect of dissolved organic matters on TCE dechlorination 129 5.3.4.5. TCE degradation in lake water 130 5.3.5. Characterization Ni/Fe@g-C3N4 nanocomposite after dechlorination reaction 132 5.3.6. ORR activity of Fe/Ni@g-C3N4 after dechlorination 134 5.3.7. Stability test 136 5.4. Conclusion 137 Chapter 6 139 Summary and proposed mechanism 139 Summary 140 Chapter 7 147 Conclusions 147 7.1. Conclusions 149 7.2. Future Scope of the Work 154 7.3. References 156 Author 185 List of publications 188   List of figures and tables Figure 1. 1 Removal methods of chlorinated hydrocarbons 8 Figure 1. 2 Air sparging with soil vapor extraction process. 9 Figure 1. 3 Sequential and catalytic hydrodechlorination pathways of TCE. 10 Figure 1. 4 Schematic diagram for the synthesis of zerovalent iron using NaBH4 as reducing agent. 12 Figure 1. 5 Proposed reduction mechanism on NZVI surface under anoxic condition. 14 Figure 1. 6 Overview of pollutant treatment using nanoscales iron particles. 15 Figure 1. 7 Bimetallic NZVI immobilization onto the surface of different matrix as per literature. 23 Figure 1. 8 NZVI/HNT tubular particles that align along groundwater flow streamlines. 25 Figure 1. 9 Emergent applications and physico-chemical properties of graphene. 28 Figure 1. 10 Schematic illustration of synthesis, physico-chemical properties and emergent applications of graphitic carbon nitride. 31 Figure 1. 11 Multistep photoreduction of CO2 into CH4. 33 Figure 1. 12 Schematic representation of rGO/Fe/Ni and B-rGO/Fe/Ni nanocomposites in TCE dechlorination. 38 Figure 1. 13 Schematic representation displaying synthesis and application of Ni/Fe@g-C3N4 nanocomposites in dechlorination. 39 Figure 2. 1 Schematic illustration for the synthesis of graphene oxide according to modified hummer’s method. 45 Figure 2. 2 Schematic representing the synthesis of boron doped reduced graphene oxide 46 Figure 2. 3 Synthesis procedure for rGO/Fe/Ni and B-rGO/Fe/Ni nanocomposites 47 Figure 3. 1 Schematic illustration of rGO/Fe/Ni nanocomposite and possible reaction mechanism for TCE dechlorination. 59 Figure 3. 2 The (a) STEM image of rGO/Fe/Ni nanocomposites, (b) HRTEM image and (c) histogram of bimetallic Fe/Ni nanoparticles. 61 Figure 3. 3 (a) SEM of rGO/Fe/Ni nanocomposites with its corresponding EPMA images of (b) carbon, (c) Fe, (d) Ni distribution and (e) the energy-dispersive spectroscopic pattern. 62 Figure 3. 4 Specific surface areas of (a) GO, (b) rGO and (c) rGO/Fe/Ni nanocomposites. 63 Figure 3. 5 Thermogravimetric analysis of rGO and rGO/Fe/Ni nanocomposites. 64 Figure 3. 6 The XPS spectra of rGO/Fe/Ni nanocomposites, (a) survey, deconvoluted XPS of (b) C 1s, (c) Fe 2p and (d) Ni 2p. 65 Figure 3. 7 (a) Raman spectra of GO, rGO and rGO/Fe/Ni nanocomposite and (b) XRD pattern of GO, rGO, Fe0, rGO/Fe and rGO/Fe/Ni nanocomposite. 66 Figure 3. 8 (a) Cyclic voltammograms of rGO and rGO/Fe/Ni nanocomposites at a scan rate of 5 mV s-1 in the potential window of 0.0 – 1.0 V and (b) Nyquist plots of rGO and rGO/Fe/Ni nanocomposite. 67 Figure 3. 9 (a) LSV curve recorded for rGO/Fe/Ni nanocomposites at a san rate of 5 mV s-1 at different rotation speed and (b) K-L plot at different electrode potential window. 68 Figure 3. 10 (a) Dechlorination of TCE by using 1 g L-1 graphene based nanomaterials including rGO, as prepared NZVI, rGO/Fe, free Fe/Ni and rGO/Fe/Ni and (b) observed rate constant (kobs). 71 Figure 3. 11 The chromatographic results of TCE dechlorination (a) TCE degradation at different retention time (b) mass balance. 72 Figure 3. 12 Recyclability of rGO/Fe/Ni nanocomposites toward 20 mM TCE dechlorination and the rate of TCE. 74 Figure 3. 13 (a) TEM image, (b) histogram, the XPS spectra (c) deconvolution of Fe 2p and (d) Ni 2p of rGO/Fe/Ni nanocomposite after TCE degradation reaction. 75 Figure 3. 14 (a) Dechlorination efficiency and (b) kobs for TCE dechlorination as a function of loaded Ni amounts and (c) formation of ethane produced from the hydrodechlorination of TCE by various Ni amounts of rGO/Fe/Ni nanocomposites. 77 Figure 3. 15 (a) The initial rate of TCE dechlorination as a function of initial TCE concentration and (b) L-H kinetics. 78 Figure 3. 16 (a) Dechlorination efficiency (b) kobs for TCE dechlorination by rGO/Fe/Ni in the presence of 1 – 20 mg L-1 humic acid, (c) dechlorination efficiency in the presence of different ion concentration and (d) kobs for TCE dechlorination. 80 Figure 4. 1 Schematic illustration of synthesis of B-rGO/Fe/Ni nanocomposite for the dechlorination of TCE under anoxic conditions. 87 Figure 4. 2 The TEM images of (a) B-rGO, (b) B-rGO/Fe/Ni nanocomposites, (c) bimetallic Fe/Ni nanoparticles, (d) SEM image of B-rGO/Fe-Ni nanocomposite and (e) is the energy dispersion spectra of B-rGO/Fe/Ni nanocomposites, SEM image (inset) showing the spot of analysis. 89 Figure 4. 3 The electron probe microanalysis (EPMA) mappings of (a) carbon (C), (b) boron (B), (c) iron (Fe) and (d) nickel (Ni) elements in B-rGO/Fe/Ni nanocomposites. 91 Figure 4. 4 The Thermogravimetric analysis and DTA of (a) GO, (b) B-rGO and (c) B-rGO/Fe/Ni nanomaterials. 92 Figure 4. 5 N2 adsorption/desorption isotherms and pore size distribution curves of (a) GO, (b) B-rGO and (c) B-rGO/Fe/Ni nanocomposites. 93 Figure 4. 6 The (a) XRD patterns and (b) Raman spectra of GO-based materials and B-rGO/Fe/Ni nanocomposites. 95 Figure 4. 7 The X-ray photoelectron spectra of (a) survey scan and deconvolution of (b) B 1s, (c) C 1s, (d) Fe 2p and (e) Ni 2p in B-rGO/Fe/Ni nanocomposites. 96 Figure 4. 8 Nyquist plot of B-rGO, Fe/Ni and as-synthesized B-rGO/Fe/Ni nanocomposites in 1.0 M Na2SO4 electrolyte. 97 Figure 4. 9 FTIR spectrum of graphene oxide and B-rGO/Fe/Ni nanocomposites. 98 Figure 4. 10 (a) The dechlorination of 20 M TCE and (b) rate constants for TCE dechlorination by 1 g L-1 GO-based nanomaterials including B-rGO, free Fe/Ni and B-rGO/Fe/Ni at pH 7. 99 Figure 4. 11 Dechlorination of 20 M TCE degradation by 1.0 g L-1 GO/Fe/Ni nanocomposite. 100 Figure 4. 12 Effects of (a) pH and (b) various initial TCE concentrations (inset is the Langmuir-Hinshelwood relationship between initial rate and initial TCE concentration) on TCE dechlorination using 1 g L-1 B-rGO/Fe/Ni nanocomposite. 102 Figure 4. 13 Chromatograms of ethane production and (d) carbon mass balance during the of dechlorination of TCE by B-rGO/Fe/Ni nanocomposite under anoxic conditions. The pH and initial TCE concentrations used in the study are 4 – 9 and 10 – 80 M, respectively. 103 Figure 4. 14 The recyclability of 20 M TCE dechlorination by 1 g L-1 (a) free Fe/Ni, (b) rGO/Fe/Ni, (c) B-rGO/Fe/Ni nanocomposites at pH 7 under anoxic conditions and (d) is the kobs for TCE dechlorination by different Fe/Ni nanoparticles as a function of cycle 105 Figure 4. 15(a) XRD pattern and (b) SEM images of B-rGO/Fe/Ni nanocomposite before reaction and (c) SEM image after TCE dechlorination under anoxic conditions. 106 Figure 5. 1 (a) Schematic presentation on preparation of layered g-C3N4, (b) digital images of melamine and its products and (c) XRD pattern of exfoliated g-C3N4 116 Figure 5. 2 (a) TEM images and (b) high resolution TEM image of layered g-C3N4 117 Figure 5. 3 (a) XPS survey scan, (b) deconvoluted region of N 1S and (c) C 1S in layered g-C3N4 118 Figure 5. 4 (a) TEM [particle size distribution, histogram] (b) HRTEM image of Ni/Fe@g-C3N4 nanocomposite [Insets as particle size histogram and high magnified image]. 119 Figure 5. 5 (a) SEM image and elemental mapping of (b) Fe distribution (c) Ni distribution in Ni/Fe@g-C3N4 nanocomposite and (e) normalized mass ration. 120 Figure 5. 6 XPS spectra, (a) survey scan, deconvoluted XPS of (b) C 1S (c) N 1S (d) Fe 2p and (e) Ni 2p of Ni/Fe@g-C3N4 nanocomposite. 121 Figure 5. 7 The XRD patterns of g- C3N4, Fe/Ni bimetallic nanoparticles and Ni/Fe@g-C3N4 nanocomposite 122 Figure 5. 8 N2 adsorption/desorption isotherms and porosity of (a) bulk g-C3N4 (b) layered g-C3N4 , and (c) Ni/Fe@ g-C3N4 nanocomposite 123 Figure 5. 9 Fe-L3-edge (a) XANES and (b) k3 weighted EXAFS spectra of the Fe0, Ni, Ni/Fe, and Ni/Fe@g-C3N4 nanocomposite 125 Figure 5. 10 (a) Cyclic voltammograms of Ni/Fe@g-C3N4 nanocomposite at a san rate of 5 mV s-1 in the potential window of -0.6 – 0.0 V using 1M Na2SO4 electrolyte (b) EIS of g-C3N4, Ni/Fe, and Ni/Fe@g-C3N4 nanocomposite, (inset) high resolution EIS 126 Figure 5. 11 (a) Dechlorination of TCE by using 1 g L-1 g-C3N4, bare NZVI, Ni/Fe bimetallic nanoparticles and Ni/Fe@g-C3N4 nanocomposites and (b) removal efficiency at different time span 127 Figure 5. 12 (a) Dechlorination of TCE by using Ni/Fe@g-C3N4 nanocomposites on applied voltage (0.2 – 0.6 V) and without applied voltage and (b) comparative TCE rate constant (kobs) 128 Figure 5. 13 Effect of Ni ion loading in TCE dechlorination and (b) TCE degradation rate constant 129 Figure 5. 14 (a) Effect of humic acid concentration on TCE dechlorination and (b) TCE degradation rate constant by using 1 g L-1 Fe/Ni@g-C3N4 nanocomposites, 20 mM HEPES buffer pH 7.0 with 120 rpm shaking under room temperature (27 ºC). 130 Figure 5. 15 (a) TCE degradation in lake water and simulated buffer and (b) TCE rate constant. 132 Figure 5. 16 Surface characterization after dechlorination reaction (a) TEM image (b) High resolution TEM image and (c) histogram of Ni/Fe@g- C3N4 nanocomposite 133 Figure 5. 17 Surface characterization after dechlorination reaction (a) XRD pattern, deconvoluted XPS pattern of (b) Fe 2p and (c) Ni 2p of Fe/Ni@g- C3N4 nanocomposites 134 Figure 5. 18 (a) Cyclic voltammograms of Fe/Ni@g-C3N4 nanocomposite at a san rate of 5 mV s-1 in the potential window of -0.9 – 0.0 V (b) LSV curve recorded at a san rate of 5 mV s-1 at different rotation speed (c) Koutecky-Levich plot at different electrode potent and (d) LSV curve recorded for standard Pt/C electrode. 135 Figure 5. 19 (a) LSV plot of bare Fe/Ni and g-C3N4 in comparison with Fe/Ni@g-C3N4 nanocomposites and (b) Stability test of Fe/Ni@g-C3N4 nanocomposites over 500 cycles 137   Table 1. 1 Physico-chemical properties of chlorinated hydrocarbons. 5 Table 1. 2. Major symptoms and sign in patient with TCE-induced hypersensitivity dermatitis (n=12). 6 Table 1. 3 Common functionalization matrices applied for metal nanoparticles and targeted pollutants. 20 Table 1. 4 The comparison of pseudo-first order rate constant (kobs) for TCE dechlorination by bimetallic Fe/Ni nanoparticles immobilized onto different supports under anoxic conditions. 21 Table 1. 5 Graphene based nanocomposites utilized for the degradation and adsorption of organic pollutants. 29 Table 1. 6 Summary of graphitic carbon nitride based nanocomposites application in the degradation of various organic compounds. 32 Table 3. 1 The comparison of pseudo-first order rate constant (kobs) for TCE dechlorination, conductivity and pH observed in the solution after the reaction by different nanocomposites in the presence of different ions. 69 Table 3. 2 The comparison of pseudo-first order rate constant (kobs) for TCE dechlorination by bimetallic Fe/Ni nanoparticles immobilized onto different supports under anoxic conditions. 72 Table 5. 1 The comparison of pseudo-first order rate constant (kobs), mass normalized rate (km), half-life, humic acid effect, and different Ni loading for TCE dechlorination. 131 Table 6. 1 Summarized characterizations, application and outcome of all Fe/Ni bimetallic nanoparticles immobilized on graphitic carbon matrices 142 Table 7. 1 The TCE dechlorination by NZVI, Fe/Ni and immobilized Fe/Ni with various graphitic carbon matrices 152

    References
    1. Wang, C.; Zheng, X.; Cai, W.; Gao, X.; Berrill, P., Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies? Appl. Energy 2017, 205, 1119-1127.
    2. Lefevre, E.; Bossa, N.; Wiesner, M. R.; Gunsch, C. K., A review of the environmental implications of in situ remediation by nanoscale zero valent iron (NZVI): behavior, transport and impacts on microbial communities. Sci. Total Environ. 2016, 565, 889-901.
    3. Wong, C. W.; Lai, K.H.; Lun, Y. V.; Cheng, T. E., Environmental management. In Environ. Manage., Springer: 2016; 1-27.
    4. Lerner, D. N.; Harris, B., The relationship between land use and groundwater resources and quality. Land use policy 2009, 26, S265-S273.
    5. Diaz, E.; Cebrian, M.; Bahamonde, A.; Faraldos, M.; Mohedano, A. F.; Casas, J. A.; Rodriguez, J. J., Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis. Catal. Today 2016, 266, 168-174.
    6. Berger, M.; Löffler, D.; Ternes, T.; Heininger, P.; Ricking, M.; Schwarzbauer, J., Hexachlorocyclohexane derivatives in industrial waste and samples from a contaminated riverine system. Chemosphere 2016, 150, 219-226.
    7. Niu, J.; Yin, L.; Dai, Y.; Bao, Y.; Crittenden, J. C., Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water. Appl. Catal. A 2016, 521, 90-95.
    8. Chen, L.; Wang, L.; Wu, X.; Ding, X., A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry. J. Cleaner Prod. 2017, 143, 1137-1143.
    9. An, S.; Jo, H. S.; Kim, D. Y.; Lee, H. J.; Ju, B. K.; Al‐Deyab, S. S.; Ahn, J. H.; Qin, Y.; Swihart, M. T.; Yarin, A. L., Self‐junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv. Mater. 2016, 28, 7149-7154.
    10. Christopher, J. G.; Kumar, G.; Tesema, A. F.; Thi, N. B. D.; Kobayashi, T.; Xu, K., Bioremediation for tanning industry: a future perspective for zero emission. Management of Hazardous Wastes, 2016, ISBN 978-953-51-2617-1.
    11. Kamali, M.; Gameiro, T.; Costa, M. E. V.; Capela, I., Anaerobic digestion of pulp and paper mill wastes–An overview of the developments and improvement opportunities. Chem. Eng. J. 2016, 298, 162-182.
    12. Srivastava, V.; Kohout, T.; Sillanpää, M., Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater. J. Environ. Chem. Eng. 2016, 4, 2922-2932.
    13. Koch, K.; Plabst, M.; Schmidt, A.; Helmreich, B.; Drewes, J. E., Co-digestion of food waste in a municipal wastewater treatment plant: comparison of batch tests and full-scale experiences. Waste Manag. 2016, 47, 28-33.
    14. Bautista, P.; Mohedano, A.; Gilarranz, M.; Casas, J.; Rodriguez, J., Application of fenton oxidation to cosmetic wastewaters treatment. J. Hazard. Mater. 2007, 143, 128-134.
    15. Vandevivere, P. C.; Bianchi, R.; Verstraete, W., Treatment and reuse of wastewater from the textile wet‐processing industry: Review of emerging technologies. J. Chem. Technol. Biotechnol. 1998, 72, 289-302.
    16. Stroo, H. F.; Ward, C. H., In situ remediation of chlorinated solvent plumes. Springer Science & Business Media: 2010.
    17. De Jong, F.; Posthuma-Doodeman, C.; Verbruggen, E., Ecotoxicologically based environmental risk limits for several volatile aliphatic hydrocarbons. RIVM rapport 601782002 2007.
    18. Li, T.; Guo, Y.; Hu, H.; Zhang, X.; Jin, Y.; Zhang, X.; Zhang, Y., Determination of volatile chlorinated hydrocarbons in water samples by static headspace gas chromatography with electron capture detection. J. Sep. Sci. 2016, 39, 358-366.
    19. Jesus, J.; Frascari, D.; Pozdniakova, T.; Danko, A. S., Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review. J. Hazard. Mater. 2016, 309, 37-52.
    20. Majone, M.; Verdini, R.; Aulenta, F.; Rossetti, S.; Tandoi, V.; Kalogerakis, N.; Agathos, S.; Puig, S.; Zanaroli, G.; Fava, F., In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New Biotechnol. 2015, 32, 133-146.
    21. Prevention, P., TSCA work plan chemical risk assessment trichloroethylene: degreasing, spot cleaning and arts & crafts. EPA, 740-R1-4002, CASRN: 79-01-6. 2014.
    22. Glaze, W. H.; Kenneke, J. F.; Ferry, J. L., Chlorinated byproducts from the titanium oxide-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environ. Sci. Technol. 1993, 27, 177-184.
    23. Humbert, B.; Fernandez, J., 1, 1, 1,-Trichloroethane exposure-study of absorption, excretion and metabolism by human subjects. Arch. Mal. Prof. 1977, 38, 415-425.
    24. Xu, X.; Ke, Y.; Yuan, J.; Liu, Y.; Li, X.; Wu, D.; Qin, X.; Mao, J.; Mao, K., Trichloroethylene-induced hypersensitivity dermatitis was associated with hepatic metabolic enzyme genes and immune-related genes. Toxicol. Res. 2016, 5, 633-640.
    25. Xu, X.; Yang, R.; Wu, N.; Zhong, P.; Ke, Y.; Zhou, L.; Yuan, J.; Li, G.; Huang, H.; Wu, B., Severe hypersensitivity dermatitis and liver dysfunction induced by occupational exposure to trichloroethylene. Ind. Health 2009, 47, 107-112.
    26. Tan, H. H.; Chan, M. T. L.; Goh, C. L., Occupational skin disease in workers from the electronics industry in Singapore. Am. J. Contact Dermat. 1997, 8, 210-214.
    27. Archer, W. L.; Stevens, V. L., Comparison of chlorinated, aliphatic, aromatic, and oxygenated hydrocarbons as solvents. Product r&d 1977, 16, 319-325.
    28. Mackay, D.; Shiu, W. Y.; Ma, K. C., Illustrated handbook of physical-chemical properties of environmental fate for organic chemicals. CRC press: 1997; Vol. 5, 773-790.
    29. Boulding, J. R., EPA environmental engineering sourcebook. CRC Press: 1996.
    30. Mackay, D. M.; Cherry, J. A., Groundwater contamination: Pump-and-treat remediation. Environ. Sci. Technol. 1989, 23, 630-636.
    31. West, C. C.; Harwell, J. H., Surfactants and subsurface remediation. Environ. Sci. Technol. 1992, 26, 2324-2330.
    32. Khan, F. I.; Husain, T.; Hejazi, R., An overview and analysis of site remediation technologies. J. Environ. Manage. 2004, 71, 95-122.
    33. Halmemies, S.; Gröndahl, S.; Arffman, M.; Nenonen, K.; Tuhkanen, T., Vacuum extraction based response equipment for recovery of fresh fuel spills from soil. J. Hazard. Mater. 2003, 97, 127-143.
    34. Shrestha, R.; Pham, T.; Sillanpää, M., Remediation of chrysene from contaminated soil by enhanced electrokinetics. Int. J. Electrochem. Sci 2009, 4, 1387-1394.
    35. Weyens, N.; Croes, S.; Dupae, J.; Newman, L.; van der Lelie, D.; Carleer, R.; Vangronsveld, J., Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ. Pollut. 2010, 158, 2422-2427.
    36. Vankar, P. S.; Sarswat, R.; Sahu, R., Biosorption of zinc ions from aqueous solutions onto natural dye waste of Hibiscus rosa sinensis: thermodynamic and kinetic studies. Environmental Progress & Sustainable Energy 2012, 31, 89-99.
    37. Nelson, M. J.; Montgomery, S. O.; Mahaffey, W.; Pritchard, P., Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 1987, 5, 949-954.
    38. Gillham, R. W. In Metal-catalyzed abiotic degradation of halogenated organic compounds, Modern Trends in Hydrogeology, 1992, IAH Conference, Hamilton, Ontario, May 10-13, 1992.
    39. Kubal, M.; Janda, V.; Benes, P.; Hendrych, J., In situ chemical oxidation and its application to remediation of contaminated soil and groundwater. Chem. Listy 2008, 102, 493-499.
    40. Sherwood, L. J.; Qualls, R. G., Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ. Sci. Technol. 2001, 35, 4126-4131.
    41. Zhou, Z.; Ruan, W.; Huang, H.; Shen, C.; Yuan, B.; Huang, C. H., Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chem. Eng. J. 2016, 283, 730-739.
    42. Doong, R. A.; Saha, S.; Lee, C. H.; Lin, H. P., Mesoporous silica supported bimetallic Pd/Fe for enhanced dechlorination of tetrachloroethylene. RSC Adv. 2015, 5, 90797-90805.
    43. Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M., Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J. Phys. Chem. C 2010, 114, 12955-12959.
    44. Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M., Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48, 1124-1130.
    45. Yin, Z.; Wu, S.; Zhou, X.; Huang, X.; Zhang, Q.; Boey, F.; Zhang, H., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307-312.
    46. Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C.; Lin, Y.; Wang, Y., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11, 954-957.
    47. Lu, T.; Zhang, Y.; Li, H.; Pan, L.; Li, Y.; Sun, Z., Electrochemical behaviors of graphene–ZnO and graphene–SnO 2 composite films for supercapacitors. Electrochim. Acta 2010, 55 (13), 4170-4173.
    48. Doong, R. A.; Wu, S. C., Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions. Chemosphere 1992, 24, 1063-1075.
    49. Gal, Z., Lower Galilee during the iron age. Eisenbrauns: 1992; Vol. 8.
    50. Gillham, R. W.; O'Hannesin, S. F., Enhanced degradation of halogenated aliphatics by zero‐valent iron. Groundwater 1994, 32, 958-967.
    51. Lun̆ák, S.; Sedlák, P., Photoinitiated reactions of hydrogen peroxide in the liquid phase. J. Photochem. Photobiol. A, 1992, 68, 1-33.
    52. Yan, W.; Lien, H. L.; Koel, B. E.; Zhang, W. X., Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science: Processes & Impacts 2013, 15, 63-77.
    53. Fu, F.; Dionysiou, D. D.; Liu, H., The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194-205.
    54. Kharisov, B. I.; Dias, H. R.; Kharissova, O. V.; Jiménez-Pérez, V. M.; Pérez, B. O.; Flores, B. M., Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv. 2012, 2, 9325-9358.
    55. Grieger, K. D.; Fjordbøge, A.; Hartmann, N. B.; Eriksson, E.; Bjerg, P. L.; Baun, A., Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol. 2010, 118, 165-183.
    56. Karn, B.; Kuiken, T.; Otto, M., Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ. Health Perspect. 2009, 117, 1813.
    57. Stecher, P. G.; Rahway, N., Translation Editor's Preface. In Handbook of Preparative Inorganic Chemistry, Volume 2 (Second Edition), Elsevier: 1965; p v.
    58. Dong, H.; Zhao, F.; Zeng, G.; Tang, L.; Fan, C.; Zhang, L.; Zeng, Y.; He, Q.; Xie, Y.; Wu, Y., Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution. J. Hazard. Mater. 2016, 312, 234-242.
    59. Pullin, H.; Springell, R.; Parry, S.; Scott, T., The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles. Chem. Eng. J. 2017, 308, 568-577.
    60. Orth, W. S.; Gillham, R. W., Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 1995, 30, 66-71.
    61. Liu, A.; Liu, J.; Zhang, W. X., Transformation and composition evolution of nanoscale zero valent iron (NZVI) synthesized by borohydride reduction in static water. Chemosphere 2015, 119, 1068-1074.
    62. Kim, H. S.; Kim, T.; Ahn, J. Y.; Hwang, K. Y.; Park, J. Y.; Lim, T. T.; Hwang, I., Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (Fe BH and Fe H2) in nitrate reduction. Chem. Eng. J. 2012, 197, 16-23.
    63. Li, T.; Farrell, J., Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Environ. Sci. Technol. 2001, 35, 3560-3565.
    64. Zhang, W. X., Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323-332.
    65. Matheson, L. J.; Tratnyek, P. G., Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28, 2045-2053.
    66. Senzaki, T.; Kumagai, Y., Removal of chlorinated organic compounds from wastewater by reduction process: treatment of 1, 1, 2, 2-tetrachloroethane with iron powder. Kogyo Yosui 1988, 357, 2-7.
    67. Klečka, G.; Gonsior, S., Reductive dechlorination of chlorinated methanes and ethanes by reduced iron (II) porphyrins. Chemosphere 1984, 13, 391-402.
    68. Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Munoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D., Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371-380.
    69. Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M., Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chem. Eng. J. 2014, 243, 14-23.
    70. Wang, T.; Su, J.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R., Functional clay supported bimetallic NZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution. J. Hazard. Mater. 2013, 262, 819-825.
    71. Zhang, Y.; Li, Y.; Li, J.; Hu, L.; Zheng, X., Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay. Chem. Eng. J. 2011, 171, 526-531.
    72. Kharisov, B. I.; Dias, H. R.; Kharissova, O. V.; Vázquez, A.; Pena, Y.; Gomez, I., Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv. 2014, 4, 45354-45381.
    73. Zhang, W.-x.; Wang, C.-B.; Lien, H.-L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 1998, 40, 387-395.
    74. Wang, S.; Han, Y.; Cao, X.; Zhao, D.; Yang, D.; Chen, J., Enhanced degradation of trichloroethylene using bentonite-supported nanoscale Fe/Ni and humic acids. Environ. Chem. Lett. 2016, 14, 237-242.
    75. Marková, Z.; Šišková, K. n. M.; Filip, J.; Čuda, J.; Kolář, M.; Šafářová, K.; Medřík, I.; Zbořil, R., Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ. Sci. Technol 2013, 47, 5285-5293.
    76. Parshetti, G. K.; Doong, R. A., Dechlorination and photodegradation of trichloroethylene by Fe/TiO2 nanocomposites in the presence of nickel ions under anoxic conditions. Appl. Catal. B 2010, 100, 116-123.
    77. Zheng, Z.; Yuan, S.; Liu, Y.; Lu, X.; Wan, J.; Wu, X.; Chen, J., Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. J. Hazard. Mater. 2009, 170, 895-901.
    78. Muftikian, R.; Fernando, Q.; Korte, N., A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Res. 1995, 29, 2434-2439.
    79. Albers, P.; Pietsch, J.; Parker, S. F., Poisoning and deactivation of palladium catalysts. J. Mol. Catal. A: Chem. 2001, 173, 275-286.
    80. Sahu, R. S.; Bindumadhavan, K.; Doong, R. A., Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene. Environ. Sci. Nano 2017, 4, 565-576.
    81. Sahu, R. S.; Li, D. L.; Doong, R. A., Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles. Chem. Eng. J. 2018, 334, 30-40.
    82. Wei, J.; Qian, Y.; Liu, W.; Wang, L.; Ge, Y.; Zhang, J.; Yu, J.; Ma, X., Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe. J. Environ. Sci. 2014, 26, 1162-1170.
    83. Kim, Y. H.; Carraway, E. R., Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Technol. 2000, 34, 2014-2017.
    84. Kim, Y. H.; Carraway, E., Reductive dechlorination of TCE by zero valent bimetals. Environ. Technol. 2003, 24, 69-75.
    85. Zhu, F.; Li, L.; Ma, S.; Shang, Z., Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. Chem. Eng. J. 2016, 302, 663-669.
    86. Lin, C. J.; Lo, S. L.; Liou, Y. H., Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J. Hazard. Mater. 2004, 116, 219-228.
    87. Li, S.; Fang, Y. L.; Romanczuk, C. D.; Jin, Z.; Li, T.; Wong, M. S., Establishing the trichloroethene dechlorination rates of palladium-based catalysts and iron-based reductants. Applied Catalysis B: Environmental 2012, 125, 95-102.
    88. Tan, L.; Liang, B.; Cheng, W.; Fang, Z.; Tsang, E. P., Effect of solvent on debromination of decabromodiphenyl ether by Ni/Fe nanoparticles and nano zero-valent iron particles. Environ. Sci. Pollut. Res. Int. 2016, 23, 22172-22182.
    89. Lin, F. H.; Doong, R. A., Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Appl. Catal. A 2014, 486, 32-41.
    90. Doong, R. A.; Liao, C. Y., Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method. J. Hazard. Mater. 2017, 322, 254-262.
    91. Parshetti, G. K.; Doong, R. A., Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Chemosphere 2012, 86, 392-399.
    92. Doong, R. A.; Lai, Y. J., Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Research 2005, 39, 2309-2318.
    93. Doong, R. A.; Lee, C. C.; Lien, C. M., Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite. Chemosphere 2014, 97, 54-63.
    94. Wang, F.; Wu, Y.; Gao, Y.; Li, H.; Chen, Z., Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron. Sep. Purif. Technol. 2016, 170, 337-343.
    95. Tan, L.; Liang, B.; Fang, Z.; Xie, Y.; Tsang, E. P., Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms. Journal of nanoparticle research 2014, 16, 2786.
    96. Su, Y. H; Hsu, C. Y.; Shih, Y. H., Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. Chemosphere 2012, 88, 1346-1352.
    97. Isse, A. A.; Lin, C. Y.; Coote, M. L.; Gennaro, A., Estimation of standard reduction potentials of halogen atoms and alkyl halides. J. Phys. Chem. B 2010, 115 (4), 678-684.
    98. Parshetti, G. K.; Doong, R. A., Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Res. 2009, 43, 3086-3094.
    99. Saleh, N.; Phenrat, T.; Sirk, K.; Dufour, B.; Ok, J.; Sarbu, T.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V., Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett. 2005, 5, 2489-2494.
    100. Danish, M.; Gu, X.; Lu, S.; Ahmad, A.; Naqvi, M.; Farooq, U.; Zhang, X.; Fu, X.; Miao, Z.; Xue, Y., Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chem. Eng. J. 2017, 308, 396-407.
    101. Danish, M.; Gu, X.; Lu, S.; Xu, M.; Zhang, X.; Fu, X.; Xue, Y.; Miao, Z.; Naqvi, M.; Nasir, M., Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Res. Chem. Intermed. 2016, 42, 6959-6973.
    102. Li, Z.; Wang, L.; Meng, J.; Liu, X.; Xu, J.; Wang, F.; Brookes, P., Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1-11.
    103. Wang, Y.; Fang, Z.; Kang, Y.; Tsang, E. P., Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized NZVI. J. Hazard. Mater. 2014, 275, 230-237.
    104. Cao, J.; Xu, R.; Tang, H.; Tang, S.; Cao, M., Synthesis of monodispersed CMC-stabilized Fe–Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. Sci. Total Environ. 2011, 409, 2336-2341.
    105. Sakulchaicharoen, N.; O'Carroll, D. M.; Herrera, J. E., Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J. Contam. Hydrol. 2010, 118, 117-127.
    106. He, F.; Zhao, D., Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environ. Sci. Technol. 2005, 39, 3314-3320.
    107. Yan, J.; Gao, W.; Dong, M.; Han, L.; Qian, L.; Nathanail, C. P.; Chen, M., Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle. Chem. Eng. J. 2016, 295, 309-316.
    108. Su, Y. F.; Cheng, Y. L.; Shih, Y. H., Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes. J. Environ. Manage. 2013, 129, 361-366.
    109. Meduri, K.; Barnum, A.; Johnson, G. O. B.; Tratnyek, P. G.; Jiao, J., Characterization of Palladium and Gold Nanoparticles on Granular Activated Carbon as an Efficient Catalyst for Hydrodechlorination of Trichloroethylene. Microsc. Microanal. 2016, 22, 332.
    110. Han, B.; Liu, W.; Li, J.; Wang, J.; Zhao, D.; Xu, R.; Lin, Z., Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts. Water Res. 2017, 120, 199-210.
    111. Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R., Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel. Chem. Eng. J. 2016, 294, 290-297.
    112. Xu, J.; Bhattacharyya, D., Fe/Pd nanoparticle immobilization in microfiltration membrane pores: Synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls. Ind. Eng. Chem. Res. 2007, 46, 2348-2359.
    113. Kim, H.; Hong, H. J.; Jung, J.; Kim, S. H.; Yang, J. W., Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (NZVI) immobilized in alginate bead. J. Hazard. Mater. 2010, 176, 1038-1043.
    114. Wu, L.; Ritchie, S. M. C., Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 2006, 63, 285-292.
    115. Smuleac, V.; Bachas, L.; Bhattacharyya, D., Aqueous-phase synthesis of PAA in PVDF membrane pores for nanoparticle synthesis and dichlorobiphenyl degradation. J. Membr. Sci. 2010, 346, 310-317.
    116. Meng, Z.; Liu, H.; Liu, Y.; Zhang, J.; Yu, S.; Cui, F.; Ren, N.; Ma, J., Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized in PVDF· Al2O3 membrane for dechlorination of monochloroacetic acid. J. Membr. Sci. 2011, 372, 165-171.
    117. Xu, L.; Wang, J., A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011, 186, 256-264.
    118. Navalon, S.; Alvaro, M.; Garcia, H., Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl. Catal. B 2010, 99, 1-26.
    119. Fukuchi, S.; Nishimoto, R.; Fukushima, M.; Zhu, Q., Effects of reducing agents on the degradation of 2, 4, 6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite. Appl. Catal. B 2014, 147, 411-419.
    120. Su, Y.; Zhang, Y.; Ke, H.; McPherson, G.; He, J.; Zhang, X.; John, V. T., Environmental remediation of chlorinated hydrocarbons using biopolymer stabilized iron loaded halloysite nanotubes. ACS Sustainable Chem. Eng. 2017, 5, 10976-10985.
    121. Choi, H.; Al-Abed, S. R.; Agarwal, S.; Dionysiou, D. D., Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem. Mater. 2008, 20, 3649-3655.
    122. Tseng, H. H.; Su, J. G.; Liang, C., Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. J. Hazard. Mater. 2011, 192, 500-506.
    123. Liu, Z.; Zhang, F.; Hoekman, S. K.; Liu, T.; Gai, C.; Peng, N., Homogeneously dispersed zerovalent iron nanoparticles supported on hydrochar-derived porous carbon: simple, in situ synthesis and use for dechlorination of PCBs. ACS Sustainable Chem. Eng. 2016, 4 (6), 3261-3267.
    124. Zhan, J.; Kolesnichenko, I.; Sunkara, B.; He, J.; McPherson, G. L.; Piringer, G.; John, V. T., Multifunctional iron− carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environ. Sci. Technol. 2011, 45, 1949-1954.
    125. Zhan, J.; Sunkara, B.; Tang, J.; Wang, Y.; He, J.; McPherson, G. L.; John, V. T., Carbothermal synthesis of aerosol-based adsorptive-reactive iron–carbon particles for the remediation of chlorinated hydrocarbons. Ind. Eng. Chem. Res. 2011, 50, 13021-13029.
    126. Moustafa, H.; Guizani, C.; Dupont, C.; Martin, V.; Jeguirim, M.; Dufresne, A., Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustainable Chem. Eng. 2017, 5, 1906-1916.
    127. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
    128. Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N., Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884-3890.
    129. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
    130. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
    131. Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M., Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595-3602.
    132. Layek, R. K.; Nandi, A. K., A review on synthesis and properties of polymer functionalized graphene. Polymer 2013, 54, 5087-5103.
    133. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.
    134. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.
    135. Geim, A. K., Graphene: status and prospects. Science 2009, 324, 1530-1534.
    136. Sun, H.; Mei, L.; Liang, J.; Zhao, Z.; Lee, C.; Fei, H.; Ding, M.; Lau, J.; Li, M.; Wang, C., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.
    137. Zhang, B.; Liu, J.; Cui, X.; Wang, Y.; Gao, Y.; Sun, P.; Liu, F.; Shimanoe, K.; Yamazoe, N.; Lu, G., Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B 2017, 241, 904-914.
    138. Wang, D. Y.; Tao, L. Q.; Liu, Y.; Zhang, T. Y.; Pang, Y.; Wang, Q.; Jiang, S.; Yang, Y.; Ren, T. L., High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale 2016, 8, 20090-20095.
    139. Wang, X.; Zhi, L.; Müllen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323-327.
    140. Hofmann, U.; Holst, R., Über die Säurenatur und die Methylierung von Graphitoxyd. Eur. J. Inorg. Chem. 1939, 72, 754-771.
    141. Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of graphite oxide revisited. The Journal of Physical Chemistry B 1998, 102, 4477-4482.
    142. Wang, Z.; Xue, Z.; Zhang, M.; Wang, Y.; Xie, X.; Chu, P. K.; Zhou, P.; Di, Z.; Wang, X., Graphene: germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 2017, 13, 17009293.
    143. Kaplan, A.; Yuan, Z.; Benck, J. D.; Rajan, A. G.; Chu, X. S.; Wang, Q. H.; Strano, M. S., Current and future directions in electron transfer chemistry of graphene. Chem. Soc. Rev. 2017, 46, 4530-4571.
    144. Sun, Y.; Zhang, W.; Tong, J.; Zhang, Y.; Wu, S.; Liu, D.; Shimakoshi, H.; Hisaeda, Y.; Song, X.-M., Significant enhancement of visible light photocatalytic activity of the hybrid B 12-PIL/rGO in the presence of Ru (bpy) 3 2+ for DDT dehalogenation. RSC Adv. 2017, 7, 19197-19204.
    145. Fan, G.; Huang, W.; Wang, C., In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics. Nanoscale 2013, 5, 6819-6825.
    146. Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Ma, T.; Sun, Y., Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem. Eng. J. 2016, 290, 136-146.
    147. Chen, X.; Dai, Y.; Guo, J.; Liu, T.; Wang, X., Novel magnetically separable reduced graphene oxide (RGO)/ZnFe2O4/Ag3PO4 nanocomposites for enhanced photocatalytic performance toward 2, 4-dichlorophenol under visible light. Ind. Eng. Chem. Res. 2016, 55, 568-578.
    148. Liu, Y.; Liu, L.; Shan, J.; Zhang, J., Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol. J. Hazard. Mater. 2015, 290, 1-8.
    149. Mao, R.; Li, N.; Lan, H.; Zhao, X.; Liu, H.; Qu, J.; Sun, M., Dechlorination of trichloroacetic acid using a noble metal-free graphene–cu foam electrode via direct cathodic reduction and atomic H. Environ. Sci. Technol. 2016, 50, 3829-3837.
    150. Farooq, U.; Danish, M.; Lu, S.; Brusseau, M. L.; Naqvi, M.; Fu, X.; Zhang, X.; Sui, Q.; Qiu, Z., Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane. Appl. Catal. A 2017, 544, 10-20.
    151. Zhang, J.; Xiong, Z.; Zhao, X., Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 2011, 21, 3634-3640.
    152. Mohan, S.; Singh, D. K.; Kumar, V.; Hasan, S. H., Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: Fixed bed column adsorption modelling and its adsorption mechanism. J. Fluorine Chem. 2017, 194, 40-50.
    153. Dai, L.; Chang, D. W.; Baek, J. B.; Lu, W., Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130-1166.
    154. Gong, Y.; Wang, J.; Wei, Z.; Zhang, P.; Li, H.; Wang, Y., Combination of carbon nitride and carbon nanotubes: synergistic catalysts for energy conversion. ChemSusChem 2014, 7, 2303-2309.
    155. Huang, H.; Yang, S.; Vajtai, R.; Wang, X.; Ajayan, P. M., Pt‐decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160-5165.
    156. Wang, Y.; Bayazit, M. K.; Moniz, S.; Ruan, Q.; Lau, C. C.; Martsinovich, N.; Tang, J., Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy Environ. Sci. 2017, 10, 1643-1651.
    157. Martin, D. J.; Reardon, P. J. T.; Moniz, S. J.; Tang, J., Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568-12571.
    158. Dong, G.; Ho, W.; Li, Y.; Zhang, L., Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl. Catal. B 2015, 174, 477-485.
    159. Liu, J.; Wang, H.; Chen, Z. P.; Moehwald, H.; Fiechter, S.; van de Krol, R.; Wen, L.; Jiang, L.; Antonietti, M., Microcontact‐printing‐assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 2015, 27, 712-718.
    160. Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805-809.
    161. Zhang, Z.; Jiang, D.; Li, D.; He, M.; Chen, M., Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight. Appl. Catal. B 2016, 183, 113-123.
    162. Yu, J.; Wang, K.; Xiao, W.; Cheng, B., Photocatalytic reduction of CO2 into hydrocarbon solar fuels over gC3N4–Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 11492-11501.
    163. Cui, Y.; Zhang, G.; Lin, Z.; Wang, X., Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Catal. B 2016, 181, 413-419.
    164. Vorobyeva, E.; Chen, Z.; Mitchell, S.; Leary, R. K.; Midgley, P.; Thomas, J. M.; Hauert, R.; Fako, E.; Lopez, N.; Perez-Ramirez, J., Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. J. Mater. Chem. A 2017, 5, 16393-16403.
    165. Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K., Visible‐Light‐Driven CO2 Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angew. Chem. Int. Ed. 2015, 54, 2406-2409.
    166. He, Y.; Zhang, L.; Teng, B.; Fan, M., New Application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 2015, 49, 649-656.
    167. Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M., Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230-3238.
    168. Kumar, S.; Kumar, B.; Baruah, A.; Shanker, V., Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C 2013, 117, 26135-26143.
    169. Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H., Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405-14414.
    170. Shan, W.; Hu, Y.; Bai, Z.; Zheng, M.; Wei, C., In situ preparation of gC 3 N 4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 2016, 188, 1-12.
    171. Yang, Y.; Guo, Y.; Liu, F.; Yuan, X.; Guo, Y.; Zhang, S.; Guo, W.; Huo, M., Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B 2013, 142, 828-837.
    172. Song, X.; Tao, H.; Chen, L.; Sun, Y., Synthesis of Fe/gC3N4 composites with improved visible light photocatalytic activity. Mater. Lett. 2014, 116, 265-267.
    173. Xue, J.; Ma, S.; Zhou, Y.; Zhang, Z.; He, M., Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl. Mater. Interfaces 2015, 7, 9630-9637.
    174. Wang, Y.; Wang, Y.; Li, Y.; Shi, H.; Xu, Y.; Qin, H.; Li, X.; Zuo, Y.; Kang, S.; Cui, L., Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation. Catal. Commun. 2015, 72, 24-28.
    175. Di Noto, V.; Negro, E., Pt–Fe and Pt–Ni Carbon nitride‐based ‘Core–Shell’ORR electrocatalysts for polymer electrolyte membrane fuel cells. Fuel Cells 2010, 10, 234-244.
    176. Yang, S.; Feng, X.; Wang, X.; Müllen, K., Graphene‐based carbon nitride nanosheets as efficient metal‐free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 2011, 50, 5339-5343.
    177. Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photo. Photobiol. C. Reviews 2015, 24, 16-42.
    178. Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X., mpg-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light. J. Am. Chem. Soc. 2010, 132, 16299-16301.
    179. Bhunia, M. K.; Yamauchi, K.; Takanabe, K., Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2014, 53, 11001-11005.
    180. Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J., Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568-12571.
    181. Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; Li, Y.; Sharp, I. D.; Kudo, A.; Yamada, T.; Domen, K., Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611.
    182. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37.
    183. Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.
    184. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717-6731.
    185. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z., Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 2012, 8, 3550-3566.
    186. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J., Visible-light driven heterojunction photocatalysts for water splitting - a critical review. Energy Environ. Sci. 2015, 8, 731-759.
    187. Shui, J.; Wang, M.; Du, F.; Dai, L., N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances 2015, 1, 1400129.
    188. Sun, Y.; Li, C.; Xu, Y.; Bai, H.; Yao, Z.; Shi, G., Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 2010, 46, 4740-4742.
    189. Deng, D.; Yu, L.; Pan, X.; Wang, S.; Chen, X.; Hu, P.; Sun, L.; Bao, X., Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 2011, 47, 10016-10018.
    190. Stefaniuk, M.; Oleszczuk, P.; Ok, Y. S., Review on nano zerovalent iron (NZVI): from synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618-632.
    191. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.
    192. Sahu, R. S.; Li, D. L.; Doong, R. A., Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles. Chem. Eng. J. 2017, 334, 30-40.
    193. Shumba, M.; Nyokong, T., Electrode modification using nanocomposites of boron or nitrogen doped graphene oxide and cobalt (II) tetra aminophenoxy phthalocyanine nanoparticles. Electrochim. Acta 2016, 196, 457-469.
    194. Zhuang, Q.; Sun, L.; Ni, Y., One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 2017, 164, 458-462.
    195. Shen, J. R., Crystallography: Resolution beyond the diffraction limit. Nature 2016, 530, 168-169.
    196. Fitouri, H.; Habchi, M. M.; Rebey, A., High‐Resolution X‐Ray Diffraction of III–V Semiconductor Thin Films. In X-ray Scattering, InTech: 2017, ISBN 978-953-51-2888-5.
    197. Fu, X.; Hu, X.; Yan, Z.; Lei, K.; Li, F.; Cheng, F.; Chen, J., Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction. Chemical Communications 2016, 52, 1725-1728.
    198. Tahir, M.; Mahmood, N.; Zhu, J.; Mahmood, A.; Butt, F. K.; Rizwan, S.; Aslam, I.; Tanveer, M.; Idrees, F.; Shakir, I., One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts. Scientific reports 2015, 5, 12389.
    199. Sarapuu, A.; Kreek, K.; Kisand, K.; Kook, M.; Uibu, M.; Koel, M.; Tammeveski, K., Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochimica Acta 2017, 230, 81-88.
    200. Ratso, S.; Kruusenberg, I.; Käärik, M.; Kook, M.; Saar, R.; Pärs, M.; Leis, J.; Tammeveski, K., Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 2017, 113, 159-169.
    201. Dettmer-Wilde, K.; Engewald, W., Practical Gas Chromatography. Springer: 2016, ISBN 978-3-642-54639-6.
    202. Snyder, J. L., Environmental Applications of Gas Chromatography. Modern Practice of Gas Chromatography, Fourth Edition 2004, 769-881.
    203. Barry, E. F.; Grob, R. L., Columns for gas chromatography: performance and selection. John Wiley & Sons: 2007.
    204. Simonin, J. P., On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254-263.
    205. Ho, Y. S.; McKay, G., Pseudo-second order model for sorption processes. Process biochemistry 1999, 34, 451-465.
    206. Tiwary, C. S.; Park, O. K.; Yang, Y.; Bhowmick, S.; Vinod, S.; Colvin, V.; Asif, S.; Vajtai, R.; Penev, E. S.; Yakobson, B. I., Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. Nanoscale 2017, 9, 6991-6997.
    207. Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M., Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. commun. 2016, 7, 10891.
    208. Song, X.; Shi, Q.; Wang, H.; Liu, S.; Tai, C.; Bian, Z., Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols. Applied Catalysis B: Environmental 2017, 203, 442-451.
    209. Xia, D.-c.; Zhou, L.; Qiao, S.; Zhang, Y.; Tang, D.; Liu, J.; Huang, H.; Liu, Y.; Kang, Z., Graphene/Ni–Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater. Res. Bullet. 2016, 74, 441-446.
    210. Tsai, Y. C.; Doong, R. A., Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization application. Synth. Met. 2015, 205, 48-57.
    211. Tsai, Y. C.; Doong, R. A., Hierarchically ordered mesoporous carbons and silver nanoparticles as asymmetric electrodes for highly efficient capacitive deionization. Desalination 2016, 398, 171-179.
    212. Chaudhary, M.; Doong, R. A.; Kumar, N.; Tseng, T. Y., Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices. Appl. Surf. Sci. 2017, 420, 118-128.
    213. Śrębowata, A.; Kamińska, I. I.; Giziński, D.; Wideł, D.; Oszczudłowski, J., Remarkable effect of soft-templating synthesis procedure on catalytic properties of mesoporous carbon supported Ni in hydrodechlorination of trichloroethylene in liquid phase. Catal. Today 2015, 251, 60-65.
    214. Fu, F.; Dionysiou, D. D.; Liu, H., The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 2014, 267, 194-205.
    215. Zhou, L. J.; Huang, X.; Chen, H.; Jin, P.; Li, G. D.; Zou, X., A high surface area flower-like Ni–Fe layered double hydroxide for electrocatalytic water oxidation reaction. Dalton Trans. 2015, 44, 11592-11600.
    216. Zhou, L.; Wen, M.; Wu, Q.; Wu, D., Fabrication and catalytic activity of FeNi@Ni nanocables for the reduction of p-nitrophenol. Dalton Trans. 2014, 43, 7924-7929.
    217. Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S. J., The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38-49.
    218. Wang, Y.; Shi, R.; Lin, J.; Zhu, Y., Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl. Catal. B 2010, 100, 179-183.
    219. Qian, X.; Song, L.; Yu, B.; Yang, W.; Wang, B.; Hu, Y.; Yuen, R. K. K., One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: Preparation and its enhancement on the thermal and mechanical properties of polyurea. Chem. Eng. J. 2014, 236, 233-241.
    220. Moon, G. H.; Kim, D. H.; Kim, H. I.; Bokare, A. D.; Choi, W., Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environ. Sci. Technol. Lett. 2014, 1, 185-190.
    221. Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S., A strongly coupled graphene and feni double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2014, 126, 7714-7718.
    222. Yuan, B.; Xu, C.; Deng, D.; Xing, Y.; Liu, L.; Pang, H.; Zhang, D., Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim. Acta 2013, 88, 708-712.
    223. Shahid, M. M.; Rameshkumar, P.; Basirun, W. J.; Juan, J. C.; Huang, N. M., Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochim. Acta 2017, 237, 61-68.
    224. Teymourian, H.; Salimi, A.; Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49, 1-8.
    225. Zhang, X. Y.; Sun, S. H.; Sun, X. J.; Zhao, Y. R.; Chen, L.; Yang, Y.; Lü, W.; Li, D. B., Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light: Science and Applications 2016, 5, e16130.
    226. Gordon, I. J.; Grugeon, S.; Takenouti, H.; Tribollet, B.; Armand, M.; Davoisne, C.; Débart, A.; Laruelle, S., Electrochemical Impedance Spectroscopy response study of a commercial graphite-based negative electrode for Li-ion batteries as function of the cell state of charge and ageing. Electrochim Acta 2017, 223, 63-73.
    227. Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L.; Driessen, M. D., Characterization and properties of metallic iron nanoparticles:  spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 2005, 39, 1221-1230.
    228. Kumar, M. A.; Bae, S.; Han, S.; Chang, Y.; Lee, W., Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni. J. Hazard. Mater. 2017, 340, 399-406.
    229. Schrick, B.; Blough, J. L.; Jones, A. D.; Mallouk, T. E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel−iron nanoparticles. Chem. Mater. 2002, 14, 5140-5147.
    230. Danish, M.; Gu, X.; Lu, S.; Brusseau, M. L.; Ahmad, A.; Naqvi, M.; Farooq, U.; Zaman, W. Q.; Fu, X.; Miao, Z., An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Appl. Catal. A 2017, 531, 177-186.
    231. Li, H.; Qiu, Y. F.; Wang, X. L.; Yang, J.; Yu, Y. J.; Chen, Y. Q., Biochar supported Ni/Fe bimetallic nanoparticles to remove 1, 1, 1-trichloroethane under various reaction conditions. Chemosphere 2017, 169, 534-541.
    232. Shih, Y. H.; Chen, M. Y.; Su, Y. F., Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles: effects of copper, nickel, and ferric cations. Appl. Catal. B 2011, 105, 24-29.
    233. Fang, Z.; Hu, Y.; Zhang, W.; Ruan, X., Shell-free three-dimensional graphene-based monoliths for the aqueous adsorption of organic pollutants. Chem. Eng. J. 2017, 316, 24-32.
    234. Huang, B.; Qian, W.; Yu, C.; Wang, T.; Zeng, G.; Lei, C., Effective catalytic hydrodechlorination of o-, p-and m-chloronitrobenzene over Ni/Fe nanoparticles: Effects of experimental parameter and molecule structure on the reduction kinetics and mechanisms. Chem. Eng. J. 2016, 306, 607-618.
    235. Xu, J.; Liu, X.; Lowry, G. V.; Cao, Z.; Zhao, H.; Zhou, J. L.; Xu, X., Dechlorination mechanism of 2, 4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol. ACS appl. Mater. Interfaces 2016, 8, 7333-7342.
    236. Park, J. A.; Yang, B.; Park, C.; Choi, J. W.; van Genuchten, C. M.; Lee, S. H., Oxidation of microcystin-LR by the Fenton process: Kinetics, degradation intermediates, water quality and toxicity assessment. Chem. Eng. J. 2017, 309, 339-348.
    237. Ahmad, A.; Gu, X.; Li, L.; Lv, S.; Xu, Y.; Guo, X., Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Environ. Sci. Pollut. Res. Int. 2015, 22, 17876-17885.
    238. Kopinke, F.-D.; Speichert, G.; Mackenzie, K.; Hey-Hawkins, E., Reductive dechlorination in water: interplay of sorption and reactivity. Appl. Catal. B 2016, 181, 747-753.
    239. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6, 183-191.
    240. Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X., Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123-129.
    241. Khan, M. E.; Khan, M. M.; Cho, M. H., Ce3+-ion, Surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-graphene nanostructures. Sci. Rep. 2017, 7, 5928.
    242. Vinothkannan, M.; Karthikeyan, C.; Kim, A. R.; Yoo, D. J., One-pot green synthesis of reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim. Acta, Part A 2015, 136, 256-264.
    243. Sun, H.; Cao, L.; Lu, L., Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011, 4, 550-562.
    244. Zhang, W.; Shi, X.; Zhang, Y.; Gu, W.; Li, B.; Xian, Y., Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A 2013, 1, 1745-1753.
    245. Petnikota, S.; Maseed, H.; Srikanth, V.; Reddy, M.; Adams, S.; Srinivasan, M.; Chowdari, B., Experimental elucidation of a graphenothermal reduction mechanism of fe2o3: an enhanced anodic behavior of an exfoliated reduced graphene oxide/Fe3O4 composite in Li-ion batteries. J. Phys. Chem. C 2017, 121, 3778-3789.
    246. Fazio, G.; Ferrighi, L.; Di Valentin, C., Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode. J. Catal. 2014, 318, 203-210.
    247. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394-4403.
    248. Sheng, Z. H.; Gao, H. L.; Bao, W.-J.; Wang, F. B.; Xia, X. H., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 2012, 22, 390-395.
    249. Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K., Three‐dimensional nitrogen and boron co‐doped graphene for high‐performance all‐solid‐state supercapacitors. Adv. Mater. 2012, 24, 5130-5135.
    250. Lien, H. L.; Zhang, W. X., Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl. Catal. B 2007, 77, 110-116.
    251. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277-2282.
    252. Paek, S. M.; Yoo, E.; Honma, I., Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2008, 9, 72-75.
    253. Song, H. J.; Jia, X. H.; Li, N.; Yang, X. F.; Tang, H., Synthesis of α-Fe2O3 nanorod/graphene oxide composites and their tribological properties. J. Mater. Chem. 2012, 22, 895-902.
    254. Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442, 282-286.
    255. Yeom, D. Y.; Jeon, W.; Tu, N. D. K.; Yeo, S. Y.; Lee, S. S.; Sung, B. J.; Chang, H.; Lim, J. A.; Kim, H., High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties. Sci. Rep. 2015, 5, 9817.
    256. Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276-1290.
    257. Chourpa, I.; Douziech-Eyrolles, L.; Ngaboni-Okassa, L.; Fouquenet, J. F.; Cohen-Jonathan, S.; Soucé, M.; Marchais, H.; Dubois, P., Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 2005, 130, 1395-1403.
    258. Grégoire, B.; Ruby, C.; Carteret, C., Hydrolysis of mixed Ni2+–Fe3+ and Mg2+–Fe3+ solutions and mechanism of formation of layered double hydroxides. Dalton Trans. 2013, 42, 15687-15698.
    259. Panchakarla, L.; Govindaraj, A.; Rao, C., Nitrogen-and boron-doped double-walled carbon nanotubes. ACS Nano 2007, 1, 494-500.
    260. Sahoo, M.; Sreena, K.; Vinayan, B.; Ramaprabhu, S., Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mater. Res. Bull. 2015, 61, 383-390.
    261. Chen, W.; Yan, L.; Bangal, P. R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48 , 1146-1152.
    262. Yanik, M. O.; Yigit, E. A.; Akansu, Y. E.; Sahmetlioglu, E., Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 2017, 138, 883-889.
    263. Sohn, H.; Szekely, J., A structural model for gas-solid reactions with a moving boundary-IV. Langmuir-Hinshelwood kinetics. Chem. Eng. Sci. 1973, 28, 1169-1177.
    264. Chen, J.; Yao, B.; Li, C.; Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229.
    265. Arvaniti, O. S.; Hwang, Y.; Andersen, H. R.; Stasinakis, A. S.; Thomaidis, N. S.; Aloupi, M., Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem. Eng. J. 2015, 262, 133-139.
    266. Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S., Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52-71.
    267. Lü, K.; Zhao, G.; Wang, X., A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin. Sci. Bull. 2012, 57, 1223-1234.
    268. Higgins, D.; Zamani, P.; Yu, A.; Chen, Z., The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy & Environmental Science 2016, 9, 357-390.
    269. Ganganboina, A. B.; Chowdhury, A. D.; Doong, R. A., Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim. Acta 2017, 245, 912-923.
    270. Ganganboina, A. B.; Dutta Chowdhury, A.; Doong, R. A., New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors. ACS Sustainable Chem. Eng. 2017, 5, 4930-4940.
    271. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J. M., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893-4908.
    272. Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M., Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680-1681.
    273. Chu, S.; Wang, Y.; Guo, Y.; Feng, J.; Wang, C.; Luo, W.; Fan, X.; Zou, Z., Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. Acs Catalysis 2013, 3, 912-919.
    274. Di Noto, V.; Negro, E., Development of nano-electrocatalysts based on carbon nitride supports for the ORR processes in PEM fuel cells. Electrochim. Acta 2010, 55, 7564-7574.
    275. Zhang, J.; Chen, Y.; Wang, X., Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092-3108.
    276. Zhao, Z.; Sun, Y.; Dong, F., Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015, 7, 15-37.
    277. Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X.; Antonietti, M.; Wang, X., Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization. Angew. Chem. Int. Ed. 2010, 49, 441-444.
    278. Ellis, J. E.; Sorescu, D. C.; Burkert, S. C.; White, D. L.; Star, A., Uncondensed graphitic carbon nitride on reduced graphene oxide for oxygen sensing via a photoredox mechanism. ACS Appl. Mater. Interfaces 2017, 9, 27142-27151.
    279. Paul, L.; Jakobsen, R.; Smolders, E.; Albrechtsen, H.-J.; Bjerg, P. L., Reductive dechlorination of trichloroethylene (TCE) in competition with fe and mn oxides-observed dynamics in H2-dependent terminal electron accepting processes. Geomicrobiol. J. 2016, 33, 357-366.
    280. Jiang, Y.; Chen, J.; Yue, C.; Zhang, H.; Chen, T., Trichloroethylene-induced DNA methylation changes in male F344 rat liver. Chem. Res. Toxicol. 2016, 29, 1773-1777.
    281. Zhao, Z.; Fang, Y. L.; Alvarez, P. J. J.; Wong, M. S., Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Appl. Catal. B 2013, 140–141, 468-477.
    282. Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang, W.; Zhu, Z.; Smith, S. C.; Jaroniec, M., Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116-20119.
    283. Yu, X.; Ye, S., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sources 2007, 172, 145-154.
    284. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? ACS Publications: 2004, 104, 4245–4270.
    285. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
    286. Bao, W. X.; Zhou, Q. L.; Zhang, T. Y.; Li, W. L.; Ren, Z. Y. In Facile synthesis of CO3O4/nitrogen-doped graphene composite and their electrochemical performances, Adv. Mater. Res. 2015,1120, 347-351.
    287. Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336-3339.
    288. Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201-1204.
    289. Li, J.; Yu, F.; Wang, M.; Lai, Y.; Wang, H.; Lei, X.; Fang, J., Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 2996-3005.
    290. Yan, S.; Li, Z.; Zou, Z., Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397-10401.
    291. Ye, L.; Wang, D.; Chen, S., Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS appl. Mater. Interfaces 2016, 8, 5280-5289.
    292. Vinu, A., Two‐dimensional hexagonally‐ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv. Funct. Mater. 2008, 18, 816-827.
    293. Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W., Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398-14401.
    294. Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y., Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 2016, 99, 123-130.
    295. Chen, H. Y. T.; Chou, J. P.; Lin, C. Y.; Hu, C. W.; Yang, Y. T.; Chen, T. Y., Heterogeneous Cu–Pd binary interface boosts stability and mass activity of atomic Pt clusters in the oxygen reduction reaction. Nanoscale 2017, 9, 7207-7216.
    296. He, P.; Liu, T.; Möslang, A.; Lindau, R.; Ziegler, R.; Hoffmann, J.; Kurinskiy, P.; Commin, L.; Vladimirov, P.; Nikitenko, S., XAFS and TEM studies of the structural evolution of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process. Mater. Chem. Phys. 2012, 136, 990-998.
    297. Zhou, D.; Jia, H.; Rana, J.; Placke, T.; Scherb, T.; Kloepsch, R.; Schumacher, G.; Winter, M.; Banhart, J., Local structural changes of nano-crystalline ZnFe2O4 during lithiation and de-lithiation studied by X-ray absorption spectroscopy. Electrochim. Acta 2017, 246, 699-706.
    298. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R., Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
    299. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F., Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937-942.
    300. Lee, C. S.; Gong, J.; Huong, C. V.; Oh, D. S.; Chang, Y. S., Macroporous alginate substrate-bound growth of Fe0 nanoparticles with high redox activities for nitrate removal from aqueous solutions. Chem. Eng. J. 2016, 298, 206-213.
    301. Kim, H. J.; Leitch, M.; Naknakorn, B.; Tilton, R. D.; Lowry, G. V., Effect of emplaced NZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. J. Hazard. Mater. 2017, 322, 136-144.
    302. Eris, S.; Azizian, S., Extension of classical adsorption rate equations using mass of adsorbent: A graphical analysis. Sep. Purif. Technol. 2017, 179, 304-308.
    303. Darling, R. M.; Meyers, J. P., Kinetic model of platinum dissolution in PEMFCs. Journal of the Electrochem. Soc. 2003, 150, A1523-A1527.
    304. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C., Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nature Energy 2017, 2, 17111.

    QR CODE