簡易檢索 / 詳目顯示

研究生: 姚慕蠡
Yao, Mu Lee
論文名稱: 以TDS及PMIRRAS方法探討鋁合金樣品表面水氣吸附機制
Study of Water Vapor Adsorption Mechanism on Aluminum Surface by TDS and PMIRRAS
指導教授: 陳俊榮
Chen, June Rong
口試委員: 薛心白
Hsueh, Hsin Pai
吳怜慧
Wu, Ling Hui
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 傅立葉轉換紅外光譜熱脫附質譜水分子鋁表面吸附
外文關鍵詞: FTIR, TDS, water molecules, aluminum Surface, adsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用PMIRRAS以及TDS系統測量鋁樣品表面吸附的水氣訊號,以澄清兩種方法在測量水氣訊號上有差異的原因。在TDS實驗樣品升溫中,利用遮蔽PMIRRAS光路的方式避開加熱紅外光對PMIRRAS光譜的干擾,以確認PMIRRAS光譜測量的可信度。

    從高曝水量實驗結果及低曝水量情況之TDS和PMIRRAS實驗中, PMIRRAS無法測量到高溫才從表面脫附的水氣存在,依PMIRRAS實驗原理推測,此時樣品表面吸附的水氣電偶極可能以水平方向平躺於樣品表面,實際原因值得進一步澄清。本實驗的另一結果顯示,在高與低曝水量下的TDS水氣總脫附量皆遠小於依氣體動力論(假設等向分布)所計算的水氣吸附層數,推測原因為大型載台將TDS初期樣品脫附的大量水氣吸回,或是等向氣體動力模型有修正的必要,亦或凝結係數和表面吸附量有關而導致誤差。

    本論文中發現,TDS過程中的實驗數據精確度可再加改善,依實驗結果估計,若將樣品載台面積減小至約2 cm2,且載台溫度合理的控制在172~177 K 之間,來自載台的干擾比例應可降至樣品水氣訊號的10 %以下。


    In this thesis, PMIRRAS and TDS systems were used to measure the amount of water molecules adsorbed on aluminum surface, attempting to clarify the differences between the two methods in the measurement of H2O signal. In the TDS experiment, the optical path of PMIRRAS was blocked to avoid the interference from the heating infrared source when heating the sample. The reliability of the PMIRRAS measurements was significantly improved.

    In the TDS and PMIRRAS experiments, no matter high or low water coverage conditions, the PMIRRAS method was found only able to detect the water molecules with lower binding energy (i.e. desorbed at lower temperature at the TDS process), but unable to detect the water molecules adsorbed in high temperature region. It was suspected that the electric dipole of H2O molecules adsorbed on the sample surface were horizontally lied, so that the interaction of the incident p-polarized infrared with the adsorbed water molecules was greatly reduced.

    Another result of the experiments showed that the total amount of water molecules desorbed during the TDS was far less than the calculated quantities of the water molecules adsorbed on the sample surface based on the gas dynamic model with isotropic distribution. The difference might attributed to the following reasons: the large-size sample holder of the experiment system re-adsorb a great deal amount of water vapor that desorbed from the sample, or the isotropic gas dynamic model is insufficient for this experiment, or that the condensation coefficient of water molecules might change with different coverages in the experiment.

    It is estimated from the experimental results that the ratio of the interference from the large-size sample holder can be reduced to be <10 % of the H2O desorbed from the sample if the surface area of the holder is reduce by a factor of 250, and the holder temperature is controlled between 172~177 K.

    中文摘要 i 英文摘要 ii 誌謝 iv 目錄 v 圖目錄 viii 第一章、引言 1 第二章、實驗原理 5 2.1 水分子結構 5 2.2 真空中分子吸附 5 2.3 光彈偏振調制紅外光分析系統 5 2.3.1 紅外光與水分子的共振 6 2.3.2 傅立葉轉換紅外光光譜 6 2.3.3 光彈偏振調變式紅外光反射光譜 7 2.4 熱脫附質譜分析(Thermal desorption spectroscopy, TDS) 9 2.4.1 脫附分子的總量計算 9 2.4.2 脫附能計算 9 2.5 吸附層數計算 11 第三章、實驗系統與實驗步驟 13 3.1 實驗系統 13 3.1.1 光彈偏振調制紅外光反射分析系統 13 3.1.1.1 傅立葉轉換紅外光光譜儀 13 3.1.1.2 光彈偏振調制系統 14 3.1.2 真空系統 15 3.1.3 熱脫附系統 17 3.2 實驗步驟 17 3.2.1 樣品製備和前置實驗 17 3.2.1.1 樣品製備 17 3.2.1.2 水氣純化實驗 18 3.2.1.3 樣品除氣處理 18 3.2.2 PMIRRAS峰值轉換水分子層數因子校正實驗 19 3.2.2.1 冰膜實驗 19 3.2.2.2 熱脫附譜圖實驗 20 3.2.2.2.1 熱脫附中斷實驗 20 3.2.2.2.2 熱脫附中斷加上鋁箔阻隔實驗 20 3.2.2.2.3 熱脫附過程中改變大型載台溫度實驗 20 第四章、實驗結果與討論 23 4.1 前置實驗 23 4.1.1 前置水氣純化實驗 23 4.1.2 前置樣品除氣實驗 24 4.2 PMIRRAS峰值轉換水分子層數因子校正實驗 24 4.2.1 冰膜實驗 24 4.2.1.1 低曝水量 24 4.2.1.2 高曝水量 25 4.2.2 熱脫附譜圖實驗 27 4.2.2.1 紅外光加熱對PMIRRAS的影響 28 4.2.2.2 大型載台溫度對熱脫附量測的影響 29 4.2.2.3 低曝水量 32 4.2.2.4 高曝水量 32 4.2.2.5 熱脫附結果整理與討論 33 4.3 樣品絕熱材料 35 4.4 誤差分析 36 4.4.1 儀器誤差 36 4.4.2 校正因子誤差分析 36 4.4.3 熱脫附量誤差分析 37 第五章、結論 38 參考文獻 42 圖 49

    1.國家實驗研究院,”真空技術與應用”,儀器科技研究中心,(2001).

    2.H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of outgassing of stainless and aluminum with various surface treatments”, J. Vac. Sci. Technology. A 11(1993), 2623.

    3.J. F. O’Hanlon and J. J. Shieh, “Reduction of water aerosol contamination during pumping of a vacuum chamber from atmospheric pressure”, Journal of Vacuum Science and Technology A9 (1991), 2802.

    4.N. C. Balchin, “The friction of clean metals immerse in liquid sodium”, Br. J. Appl. Phys. 13 (1962), 564-569.

    5.陳俊榮,曾湖興,劉遠中,“鋁合金超高真空系統的研究”,核子科學 24 (1987), 25.

    6.H. F. Dylla, “Glow discharge techniques for conditioning highvacuum systems”, J. Vac. Sci. Technol. A 6 (1988), 1276.

    7.K. Akaishi, K. Ezaki, Y. Kubota, O. Motojima, “Reduction of water outgassing and UHV production in an unbaked vacuum chamber by neon gas discharge”, Vacuum 53 (1999), 285.

    8.D. R. Lide, “CRC Handbook of Chemistry and Physics”, 74th
    ed.,Boca Raton, Florida (1994), p.9.

    9.S.S. Inayoshi, S. Tsukahara, A. Kinbara, “Decrease of water vapor desoption by Si film coating on stainless steel”, Vacuum 53 (1999), 281.

    10.K. Tatenuma, K. Uchida, T. Itoh, T. Momose, and H. Ishimaru, “Acquisition of clean ultrahigh vacuum using chemical treatment”, Journal of Vacuum Science and Technology A 16 (1998), 2693.

    11.熊高鈺、詹哲鎧、張進春、陳慶隆、陳彥斌、許憲能、薛心白、陳俊榮,“同步加速器台灣光子源超高真空系統設計”,真空科技 21(3-4) (2008), 12-19.

    12.M. Mohri, S. Maeda, H. Odagiri, M. Hashiba , T. Yamashina and H. Ishimaru, “Surface study of Type 6063 aluminum alloys for vacuum chamber materials”, Vacuum, V34(6) (1984), 643.

    13.H. Pölzl, F. Zinka, D. Gleispach, A. WinklerAl(111), “Adsorption of H2O on Al(111) and the interaction of atomic D with the ice layer”, Surface Science 440 (1999), 196–212.

    14.鄭宇尊,“超高真空樣品經乾燥曝氣之熱釋釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2008).

    15.林怡君,“以極乾燥氮氣曝氣之鋁合金真空腔熱釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2011).

    16.蕭屹崴,“利用不同氧氣含量擠型之鋁合金表面熱釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2012).

    17.楊財烈,“鋁合金表面曝水後受光照射作用之探討”,碩士論文,國立清華大學原子科學系,(2003).

    18.李仁佑,“真空中絕熱膨脹水氣吸附作用之探討”,碩士論文,國立清華大學原子科學系,(2003).

    19.葉家瑋,“建立紅外光分析系統以探討真空中水氣的現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2007).

    20.劉文峰,“利用紅外光光譜儀探討真空中水氣吸附現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2008).

    21.賈立凱,“以紅外光光譜儀定量真空中鋁合金表面的水氣吸附”,碩士論文,國立清華大學生醫工程與環境科學系,(2009).

    22.黃晧昌,“以PMIRRAS量測鋁合金樣品表面經處理後的水分子吸附”,碩士論文,國立清華大學生醫工程與環境科學系,(2013).

    23.林峻模,“以TDS及FTIR方法探討鋁合金樣品之水氣吸附”,碩士論文,國立清華大學生醫工程與環境科學系,(2015).

    24.Weissler, G. L.,“Vacuum Physics and Technology”,New York : Academic Press, (1979).

    25.Luo Zhixun, Fang Yan, Yao Jiannian,“A New Approach for Non-destructive Detection of Dye Molecules by Combination of Terahertz Time-domain Spectra and Raman Spectra”, Trends in Applied Sciences Research 2(4) (2007), 295-303.

    26.V. P. Tolstoy, I. V. Chernyshova,“Handbook of infrared spectroscopy of ultrathin films”, John Wiley & Sons Inc, Canada, (2003), pp12.

    27.A. A. Michelson,“Recent advances in spectroscopy”, Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam (1967).

    28.T. Buffeteau, B. Desbat and J. M. Turlet,“Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films :procedure and quantitative analysis”, Applied spectroscopy 45 (1991), 380.

    29.R. Corn,“Rapid-scan Polarization-modulated Fourier-trasform Infra-red Reflection Absorption Spectroscopy”, Applications News for Users of Photoelastic Modulators (1996), 1-4.

    30.R. G. Greenler,“Infrared study of adsorbed molecules on metal surface by reflection techniques”, J. Chem. Phys. 44(1) (1966), 310.

    31.S.A. Francis and A. H. Allison, “Infrared spectra of monolayer on metal mirrors”, Journal of the Optical Society of America 49 (1959), 131.

    32.J. M. Chalmers and P. R. Griffiths, “Handbook of Vibrational Spectroscopy”, Vol. 2 John Wiley and Sons, Chichester (2002), pp.982

    33.J. C. Vickerman, “Surface Analysis: the Principal Techniques”, Ch. 3, John Wiley and Sons, New York, (1997).

    34.J. M. Chalmers and P. R. Griffiths, “Handbook of Vibrational Spectroscopy”, Vol. 2 John Wiley and Sons, Chichester, (2002) pp.1042

    35.F. von Zeppelin, M. Haluška, M. Hirscher,“Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids”, Thermochimica Acta, Vol. 404 (2003) 251-258.

    36.A. M. de Jong and J. W. Niemantsverdriet,“Thermal desorption analysis: comparative test of ten commonly applied procedures”, Surface Science 233 (1990) 355-365.

    37.D. E. Brown, S. M. George, C. Huang, E. K. L. Wong, Keith B. Rider, R. Scott Smith, Bruce D. Kay, “H2O condensation coefficient and refractive index for vapor-deposited ice from molecular beam and optical interference measurements”, J. Phys. Chem. (1996), 100, 4988-4955.

    38.Santanu Debnath, Eric Jiang, John Coffin, “Performance Characteristics of the Advanced ETC EverGlo IR Source”, Thermo Fisher Scientific, Madison, WI, USA.

    39.“Synchronous Sampling Demodulator”, GWC Instruments

    40.H. Pölzl, F. Zinka, D. Gleispach, A. Winkler, “Adsorption of H2O on Al(111) and the interaction of atomic D with the ice layer”, Surface Science 440 (1999) 196–212.

    41.Peter J. Eng, Thomas P. Trainor, Gordon E. Brown Jr. Glenn A. Waychunas, Matthew Newville, Stephen R. Sutton, Mark L. Rivers1, “Structure of the Hydrated α-Al2O3 (0001) Surface”, Science 288 (2000), 1029.

    42.Mark A. Zondlo, Timothy B. Onasch, Matthew S. Warshawsky, and Margaret A. Tolbert, “Experimental Studies of Vapor-Deposited Water-Ice Films Using Grazing-Angle FTIR-Reflection Absorption Spectroscopy”, J. Phys. Chem. B 101 (1997), 10887-10895.

    43.Kenneth C. Hass, William F. Schneider, Alessandro Curioni, Wanda Andreoni, “The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles”, Science 282 (1998), 265.

    44.Roderick J. Hill, “Crystal Structure Refinement and Electron Density Distribution in Diaspore”, Phys, Chem. Minerals 5 (1979), 179-200.

    45.G. L. Weissle, R. W. Carlson,“Vacuum Physics and technology”, New York : Academic Press, (1979), p.16.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE