簡易檢索 / 詳目顯示

研究生: 陳耀鴻
Chen, Yao-Hung
論文名稱: CMOS阻抗式DNA感測器之開發
Development of CMOS impedimetric DNA sensors
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 劉承賢
Liu, Cheng-Hsien
邱一
Chiu, Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: 阻抗式DNA感測CMOS生物感測器徳拜長度效應電雙層高頻頻譜分析儀
外文關鍵詞: Impedance measurement, CMOS bio-MEMS, Debye length, EDL, high frequency, spectrum analyzer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今半導體產業的發展,積體電路設計與矽晶片製造已經是非常成熟的產業,使得跨領域的研究越發興起,而將電路與微機電系統整合於一片晶片上。可高感測度的生醫感測晶片就是其中之一,藉由不同的表面修飾方法,可以感測極微量的生物分子(蛋白質、DNA),以利於進行多方面定性及定量研究。
    然而,這些生物分子須保存在含有鹽分的環境中,而高離子強度檢體會因離子遮蔽形成電雙層效應,造成電場只能穿透距離感測電極數個Debye length的距離(~nm)。因此,若欲量測此生物分子的訊號,須提高電場於高離子環境下量測的感測度。
    本論文提出使用以高頻訊號的方式,使離子無法形成電雙層聚集於表面,進而提高感測器的感測度。晶片使用TSMC 0.35μm 2P4M CMOS製程,設計不同間距、大小的指叉電容,並以頻譜分析儀,即時分析並偵測B型肝炎病毒DNA分子於高離子強度下隨著頻率的變化,並建立相關於液體量測的電路模型。
    最後整合讀取電路,並搭配使用SR445A訊號放大器,用以驅動頻譜分析儀。在不同的離子強度下可以觀測到明顯的增益與相位隨著頻率的變化。由於DNA在溶液中帶負電,因此當target DNA與表面probe DNA進行雜交反應後,將會改變晶片表面的電容值以及介電常數,進而改變其頻率響應。吾人等可藉由此結果量化等效的阻抗及電路模型。


    Nowadays, both IC design and semiconductor manufacturing have become mature industries, leading to a research trend toward integrating sensors and IC onto a single silicon chip. Highly sensitive CMOS bio-sensors are great examples of this trend. By modifying different kinds of proteins or ssDNA on detector, we can detect certain proteins or sequences of DNA, and quantify their concentration down to fM level. These proteins and DNA should be kept in buffer solutions in order to prevent bio-molecules from denaturing. However, these ions in buffer solutions can form a double layer in the process of sensing bio-molecules, and the local electric field can only penetrate a few Debye length distance (~nm) thorough the solution. If we want to get a better S/N ratio, we must enhance out sensitivity in such salty condition.
    In this work, we developed a solution to solve this problem by measuring these bio-molecules in relatively high frequency. Using this method, ions cannot form double layer on our detector in such short time, this enhanced our sensitivity and S/N ratio. The fabricated bio-MEMs chips were layout by full-custom design flow using TSMC 0.35 2P4M technology. In order to detect small amount of HBV-DNA, various types of interdigitated capacitor with different gap sizes and capacitances were fabricated and analyzed by spectrum analyzer,
    Finally, integrated with read-out circuit and SR445A (amplifier, aim to drive spectrum analyzer), our impedance sensor can output frequency response up to 100MHz. With DNA negatively charged, when target DNA hybridized with probe DNA on the surface, we can indirectly build up equivalent circuits and directly quantify the impedance change induced by DNA hybridization.

    目錄 致謝 III 摘要 IV Abstract V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 生醫實驗介紹 1 1-1前言 1 1-2文獻回顧 3 1-3研究動機 5 第二章 生醫實驗介紹 9 2-1 指叉式電容設計 9 2-1-1 指叉電極感測機制 9 2-1-2 液體高頻感測模型 11 2-2 感測電路設計 15 2-2-1 指叉式電容模擬 15 2-2-2 電路架構 16 2-2-3 電路模擬 19 第三章 生醫實驗介紹 32 3-1 介紹待測物DNA 32 3-2 表面修飾鍵結步驟 34 第四章 量測結果與分析 42 4-1 量測設備介紹 42 4-2 晶片結構檢視與PCB板封裝 45 4-3量測結果 47 4-3-1空氣中量測 47 4-3-2操作環境確認 49 4-3-2溶液環境量測 52 4-3-3 pH值下量測 55 4-3-4 DNA於緩衝溶液下量測 58 4-3-5 於不同PBS濃度下等效模型之建立 64 第五章 結論與未來工作 66 參考文獻 68 附錄 75 7-1空氣中量測 75 7-2PBS與水中量測 76 7-2-1不同深度 76 7-2-2不同時間 82 7-2-3參考電極給訊號 84 7-3pH量測 87 7-4DNA(APTMS)量測 90 7-4-1 第一次量測(08/28) 90 7-4-2 第二次量測(09/08) 96 7-4-3 第三次量測(09/29) 107

    [1] J. Homola,,“Surface plasmon resonance sensors for detection of chemical and biological species, ” Chemical reviews, vol.108, pp.462- 493, 2008.
    [2] P. Bergveld, “Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology,” IEEE Trans. Biomed. Circuits and Systems, vol. 19, no. 5, pp. 342–351, 1972.
    [3] Y. Jiang, X. Liu, “A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid e. coli screening,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 2, pp. 402-415, 2018.
    [4] X. Huang, H. Yu, “A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 9, pp. 2224-2233, 2015.
    [5] S. M. Peter, M. K. James, “Dual mode CMOS ISFET sensor for DNA sequencing,” International Conference on Intelligent Computing, Instrumentation and Control Technologies, pp. 307-309, 2017.
    [6] A.L Newman, K. W. Hunter, “The capacitive affinity sensor: a new biosensor,” Proceedings of 2nd International Meeting Chemical Sensor, pp.596-598,1986.
    [7] P. Batailard, F.Gardies, “Direct Detection of Immunospecies by Capacitance” , Anal. Chem. vol. 60, pp.2374-2379, 1988.
    [8] Wang, J, “Glucose biosensors:40 years of advances and challenges,” Electroanalysis, vol. 13, no.12, pp. 983., 2001.
    [9] S.J. Updikem, G.P. Hicks, “The Enzyme electrode.” Nature, vol. 214, pp. 986-988, 1967.
    [10] R. M. Matanguihan, K. B. Konstantinov, “Dielectric measurement to monitor the of biological cells,” Bio process Engineering, vol. 11, pp.213-222, 1994.
    [11] D. C. Cullen, R. S. Sethi, “Multi-analyte miniature conductance biosensor,” Analytica Chimica Acta, vol. 231, pp. 33-40, 1990.
    [12] A. A. Shul’ga, A.P. Soldakin, “Thin-film conductometric biosensors for glucose and urea determination,” Biosensors & Bioelectronics. vol.9, pp.217-223, 1994.
    [13] R. Hintsche, M. Paeschke, “Microelectrode arrays and application to biosensing devices,” Biosensors & Bioelectronics, vol. 9, pp. 697-705, 1994.
    [14] D. M. Shin, J.R Choi, “Exploring the use of impedance spectroscopy in relaxation and electro-chemical studies,” Appl. Spectrosc. Rev. vol. 53, pp. 157-176, 2018.
    [15] G. Lillies, P. Payne, P. Vadgama, “Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing,” Sensors and Actuators B: Chemical, vol. 78, pp.249-256, 2001.
    [16] E. Kartz, I. Willner, “Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors” Electroanalysis, vol. 15, pp.913-947, 2003.
    [17] J.S. Daniels, N. Pourmand, “Label‐Free Impedance Biosensors: Opportunities and Challenges,” Electroanalysis, vol. 19, pp. 1239-1257, 2007.
    [18] A. Bratovm, S. Brosel-Oliu, “Label-free impedimetric biosensing using 3D interdigitated electrodes,” Advanced Materials, Devices and Applications, pp.179-198, 2018.
    [19] J.R. Macdonald, Impedance Spectroscopy, 1987.
    [20] A.J. Bard, L.R. Faulkner, Electrochemical Methods, 1980.
    [21] M. I. Prodromidis, “Impedimetric Biosensors and Immunosensors”, Pak. J. Anal. Environ. Chem., vol. 8, no.1, pp. 69-71, 2007.
    [22] E. Katz and I. Willner, “Electroanalytical and bioelectroanalytical systems based on metal and semoconductor nanoparticles,” Electroanalysis, vol. 16, no.1-2, 2004.
    [23] S. M. Radke, E. C. Alocilja, “Design and fabrication of a microimpedance biosensor for bacterial detection,” IEEE Sensors, vol.4 pp.434-440,2004.
    [24] P.A.E. Piunno, U.J. Krull, “Fiber-optic DNA sensor for flurometric nucleic acid detemination,” Anal. Chem. vol. 67, pp.2635-2643, 1995.
    [25] C.H. Fan, K.W. Plaxco, “Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection od DNA,” Proc. Natl. Acad. Sci., vol.100, pp.9134-9137, 2003.
    [26] A. Lermo, S. Campoy, “Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays,” Biosensor & Bioelectronics, vol.22, pp.2010-2017, 2007.
    [27] M. Díaz-González, A. de la Escosura-Muniz, “Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles,” Biosensor & Bioelectronics, vol.23, pp. 1340-1346, 2008.
    [28] J. Wang, D.K. Xu, “A Novel Chemiluminescence Metalloimmunoassay based on gold label,” Anal. Chem. vol.73, pp.5576-5581, 2006.
    [29] J. Wang, G. Liu, “Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2,” Electrochem. Commun., vol.4, pp. 722–726, 2002.
    [30] K.M. Millan, A. Saraullo, “Electrochemical DNA biosensor for the detection of pathogenic bacteria Aeromonas hydrophila,” Anal. Chem., vol.66, pp.2943-2948, 1994.
    [31] K. Maruyama, J. Motonaka, “DNA electrochemical behaviors, recognition and sensing by combining with PCR technique,” Sensors, vol.3, pp.128-145, 2003.
    [32] F. Yan, A. Erdem, “Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species,” Electrochem. Commun, vol.3, pp.224-228, 2001.
    [33] K. Hashimoto, K. Ito, “Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye,” Anal. Chem., vol.66, pp.3830-3833, 1994.
    [34] F. Lisdat, D. Schafer, “The use of electrochemical impedance spectroscopy for biosensing,” Anal. Bioanal. Chem., vol.391, pp.1555-1567, 2008.
    [35] J. Wang, A.B. Kawde, “Amplified label-free electrical detection of DNA hybridization,” Analyst, vol.127, pp.383-386, 2002.
    [36] H.H. Thorp, “Cutting out the middleman: DNA biosesnsors based on electrochemical oxidation,” Trends Biotechnol., vol.16, pp.117–121, 1998.
    [37] J. Wang, D.K. Xu, “A Novel Chemiluminescence Metalloimmunoassay based on gold label,” Anal. Chem. vol.73, pp.5576–5581, 2006.
    [38] J.Z. Chena, A.A. Darhuberb, S.M. Troian, S. Wagner, “Capacitive sensingof droplets for microfluidic devices based on thermocapillary actuation,” J.Lab-on-Chip , vol.4, pp.473-480, 2004.
    [39] A. Balasubramanian, B. Bhuva, R. Mernaugh, F.R. Haselton, “Si-based sensor for virus detection,”, IEEE J. Sensors, vol.5, pp.3-8, 2005.
    [40] S.B. Prakash, P. Abshire, “A CMOS capacitance sensor that monitors cell viability,” Proc. IEEE Sensors Conf., 2005.
    [41] C. J. Chu et al., “Improving nanowire sensing capability by electrical field alignment of surface probing molecules,” Nano Lett., vol. 13, no. 6, pp. 2564-2569, 2013.
    [42] A. Bonanni, M. del Valle, “Use of nanomaterials for impedimetric DNA sensors: A review,” Analytica Chimica Acta., vol.678, pp.7-17, 2010.
    [43] W. Zhang, T. Yang, “Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization” Biosens. & Bioelectron., vol.25, pp.428-434, 2009.
    [44] T.H.M. Kjallman, H. Peng, “A CdTe nanoparticle-modified hairpin probe for direct and sensitive electrochemical detection of DNA,” Analyst, vol.135, pp.488-494, 2010.
    [45] H. Helmholtz, "Studien über elektrische Grenzschichten", Annalen der Physik, vol. 7, pp. 837-882, 1879.
    [46] M. Gouy, "Sur la constitution de la charge électrique a la surface d'un électrolyte", J. de Physicque et Appliquee, vol. 9, pp. 457-468, 1910.
    [47] D. L. Chapman,“A contribution to the theory of electrocapillarity,” Phil. Mag., vol. 25, pp. 475-475, 1913.
    [48] N. Gao, W. Zhou, X. Jiang,"General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors", Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
    [49] C. Laborde et al., "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays", Nature Nanotechnol., vol. 10, no. 9, pp. 791-795, 2015.
    [50] G. S. Kulkarni, Z. Zhong, “Detecton beyond the debye screening length in a high frequency nanoelectronic biosensor,” Nano Lett. vol.12, pp.719-723, 2012.
    [51] R.J. Kortschot, A. P. Philipse, “Debye length dependence of the anomalous dynamics of ionic double layers in a parallel plate capacitor,” J. phys. Chem. C, vol.118, pp.11584-11592, 2014.
    [52] F.Widdershoven, A. Cossettni, “A CMOS pixelated nanocapacitor biosensor platform for high-frequency impedance spectroscopy and image,” IEEE transactions on biomedical circuit and systems, vol.12, no.6, pp.1369-1382, 2018.
    [53] F. Pittino, L. Selmi, “Numerical and analytical models to investigate the AC high frequency response of nanoelectrode/SAM/electrolyte capacitice sensing elecments,” Solid-state electronics, vol.88, pp.82-88, 2013.
    [54] M. Crescentini, M. Rossi, “AC and phase sensing of nanowires for Biosensing,” Biosensors, vol.6, pp.1-15, 2016.
    [55] N. Gao, W. Zhou, X. Jiang, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors", Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
    [56] R. Elnathan et al., "Biorecognition layer engineering: Overcoming screening limitations of nanowire-based FET devices", Nano Lett., vol. 12, no. 10, pp. 5245-5254, 2012.
    [57] N. S. Mazlan, M M Ramli, “Interdigitated electrodes as imdeance and capacitance biosensors : A review, ” AIP conference Preoceedings 1885, 020276 , 2017.
    [58] L. Wang, M. Veselinovic, “A sensitive capacitive biosensor using interdigitated electrides,” Biosensors & Bioelectronics. vol.87, pp.646-653, 2017.
    [59] A. Quershi, Y. Gurbuz, “A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker,” Biosensors and Bioelectronics, vol.25, pp.877-882, 2009.
    [60] V. Tsouti, C. Boutopoulos, “Capacitive microsystems for biological sensing,” Biosensors and Bioelectronics, vol.27, pp.1-11, 2011.
    [61] H. J. Panya, H. T. Kim, “Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements,” Sensors and Actuators B: Chemical, vol.199, pp.259-268, 2014.
    [62] A. Rivadeneyra, J. F. Salmerón, “A novel electrode structure compared with interdigitated electrodes as capacitive sensor,” Sensors and Actuators B:Chemical, vol.204, pp.552-560, 2014.
    [63] O. Stern, Z. Elektrochem, vol. 30, pp. 508, 1924.
    [64] F. Pittino, L. Selmi, “Numerical and analytical models to investigate the AC high-frequency response of nanoelectrode/SAM/electrolyte capacitive sensing elements,” Solid-State electronics, vol. 88, pp82-88, 2013.

    QR CODE