簡易檢索 / 詳目顯示

研究生: 王慶民
Ching-Min Wang
論文名稱: Fix-Free碼的建構方式
Constructions of Fix-Free Codes
指導教授: 鄭傑
Jay Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 18
中文關鍵詞: fix-free 碼建構
外文關鍵詞: fix-free codes, construction
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一種編碼如果同時是前綴碼(prefix code)與後綴碼(suffix code),則稱這一種編碼為fix-free碼。對於一個使用fix-free碼編碼的資料, 可以同時由收到資料的前端與後端同時解碼,因此可以加快解碼的速度。如果當資料由前端開始解碼且在收到的資料中有錯誤發生,則可以由後端繼續解碼因而復原發生錯誤之位置後面的資料。目前關於fix-free碼的研究方向大約包含︰討論fix-free碼存在的充分必要條件和建構方法、如何有效的編碼、對於編碼資料發生錯誤下的解碼或同步問題、如何應用fix-free碼於實際上,例如fix-free碼已經被發展應用於H.263+與MPEG-4等影像標準上面。本篇論文著重於討論fix-free碼存在的充分條件與建構方法。

    雖然fix-free碼同時是前綴碼與後綴碼,但其結構卻遠比後兩者複雜。到目前為止還未有一個定理可以完整地判斷給定的字碼長度是否存在fix-free碼,且建構其對應的fix-free碼。Ahlswede等人推測一個fix-free碼存在的充分條件為: 如果字碼長度滿足
    $$\sum_{l \in L} 2^{-l} \leq \frac{3}{4}$$
    則會存在fix-free碼,其中L是所有字碼長度所形成的集合。目前為止只有在某些特殊條件下這一個推測才成立,且沒有反例可以推翻這一個推測。本篇論文裡,我們證明一個fix-free碼存在的充分條件: 如果字碼的長度只有4、6或8,且長度為4的個數少於或等於4個,長度為6的少於或等於8個,且如果字碼長度的Kraft sum小於或等於3/4,則存在一組fix-free碼。最後我們提供了由已知的fix-free碼來建構另一組fix-free碼,以及由兩組已知的前綴碼與後綴碼來建構fix-free碼的方法。


    A code is a fix-free code if it is both a prefix code and a suffix code. Data encoded by a fix-free code can be decoded in the forward direction and the backward direction simultaneously, thus reducing the decoding time by half. In this thesis, we prove a sufficient condition for the existence of fix-free codes and provide some methods to construct a fix-free code from existing codes.

    Abstract i Contents ii 1 Introduction 1 2 Previous Works and Some Basic Notations 4 2.1 Previous works 4 2.2 Some Basic Notations 5 3 Main Results 8 3.1 A Special Case 8 3.2 Constructions From Existing 11 4 Conclusion 15 Bibliography 16

    [1] E. N. Gilbert and E. F. Moore, "Variable-length binary encodings," Bell Syst. Tech. J., vol. 38, pp. 933-967, July 1959.
    [2] J. Berstel and D. Perrin, Theory of Codes, Orlando, FL: Academic Press, 1985.
    [3] A. S. Fraenkel and S. T. Klein, "Bidirectional Huffman coding," Comput. J., vol. 33, pp. 296-307, 1990.
    [4] Y. Takishima, M. Wada, and H. Murakami, "Reversible variable length codes," IEEE Trans. Commun., vol. 43, pp. 158-162, Feb.-Apr. 1995.
    [5] M. P. SchÄutzenberger, "On a special class of recurrent events," Ann. Math. Statist., vol. 32, pp. 1201-1213, Dec. 1961.
    [6] R. Ahlswede, B. Balkenhol, and L. Khachatrian, "Some properties of fix-free codes," Proc. First INTAS Int. Seminar Coding Theory and Combinatorics, Thahkzdzor, Armenia, Oct. 1996, pp. 20-33.
    [7] D. Gillman and R. L. Rivest, "Complete variable-length fix-free codes," Des., Codes Cryptogr., vol. 5, pp. 109-114, Mar. 1995.
    [8] C.-W. Tsai and J.-L. Wu, "Modified symmetrical reversible variable-length code and its theoretical bounds," IEEE Trans. Inform. Theory, vol. 47, pp. 2543-2548, Sept. 2001.
    [9] C.-W. Tsai and J.-L. Wu, "On constructing the Huffman-code-based reversible variable-length codes," IEEE Trans. Commun., vol. 49, pp. 1506-1509, Sept. 2001.
    [10] C.-W. Lin, Y.-J. Chuang, and J.-L. Wu, "Generic construction algorithms for symmetric and asymmetric RVLCs," Proc. Int. Conf. Commun. Syst. (ICCS'02), Singapore, Nov. 2002, pp. 968-972.
    [11] K. Lakovic and J. Villasenor, "On design of error-correcting reversible variable length codes," IEEE Commun. Lett., vol. 6, pp. 337-339, Aug. 2002.
    [12] K. Lakovic and J. Villasenor, "An algorithm for construction of efficient fix-free codes," IEEE Commun. Lett., vol. 7, pp. 391-393, Aug. 2003.
    [13] R. Bauer and J. Hagenauer, "Iterative source/channel-decoding using reversible variable length codes," Proc. Data Compression Conf. (DCC'00), Snowbird, UT, Mar. 2000, pp. 93-102.
    [14] M. Bystrom, S. Kaiser, and A. Kopansky, "Soft source decoding with applications," IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 1108-1120, Oct. 2001.
    [15] S. Kaiser and M. Bystrom, "Soft decoding of variable-length codes," Proc. IEEE Int. Conf. Commun. (ICC'00), New Orleans, LA, June 2000, pp. 1203-1207.
    [16] ITU-T, "Video coding for low bit rate communication," Recommendation H.263, 1997.
    [17] ISO/IEC, "Coding of audio-visual objects: Visual," Final Draft Int. Std. 14496-2, Oct. 1998.
    [18] S.-S. Gao and G.-F. Tu, "Robust H.263+ video transmission using partial backward decodable bit stream (PBDBS)," IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 182-187, Feb. 2003.
    [19] J. Wen and J. D. Villasenor, "Reversible variable length codes for effcient and robust image and video coding," Proc. Data Compression Conf. (DCC'98), Snowbird, UT, Aug. 1998, pp. 471-480.
    [20] J. L. H. Webb, "Effcient table access for reversible variable-length decoding," IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 981-985, Aug. 2001.
    [21] C.-W. Tsai, T.-J. Huang, K.-L. Fang, and J.-L. Wu, "A hybrid and flexible H.263-based error resilient and testing system," Proc. IEEE Region 10 Int. Conf. Electrical Electron. Technol. (TENCON'01), Singapore, Aug. 2001, pp. 122-128.
    [22] C.-W. Lin and J.-L. Wu, "On error detection and error synchronization of reversible variable-length codes," IEEE Trans. Commun., vol. 53, pp. 826-832, May 2005.
    [23] L. G. Kraft, "A device for quantizing, grouping, and coding amplitude modulated pulses," Master's Thesis, Department of Electrical Engineering, MIT, Cambridge, MA,1949.
    [24] K. Harada and K. Kobayashi, "A note on the fix-free code property," IEICE Trans. Fund. Electron., Commun. Comput. Sci., vol. E82-A, pp. 2121-2128, Oct. 1999.
    [25] C. Ye and R. W. Yeung, "Some basic properties of fix-free codes," IEEE Trans. Inform. Theory, vol. 47, pp. 72-87, Jan. 2001.
    [26] S. Yekhanin, "Sufficient conditions of existence of fix-free codes," Proc. IEEE Int. Symp. Inform. Theory (ISIT'01), Washington, D.C., June 2001, p. 284.
    [27] S. Yekhanin, "Improved upper bound for the redundancy of fix-free codes," IEEE Trans. Inform. Theory, vol. 50, pp. 2815-2818, Nov. 2004.
    [28] Z. Kukorelly and K. Zeger, "Suffcient conditions for existence of binary fix-free codes," to apper in IEEE Trans. Inform. Theory.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE