簡易檢索 / 詳目顯示

研究生: 王玠皓
Wang, Chieh-Hao
論文名稱: Hybrid PON-RoF System and Optical Sensor Network
混合式被動光學網路/微波光纖系統與光學感測器網路
指導教授: 馮開明
Feng, Kai-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 被動光學網路微波光纖光學感測器網路射頻訊號
外文關鍵詞: passive optical network, radio over fiber, optical sensor network, RF signal
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光纖是現代化中傳輸資訊重要的介質之一,由於有許多優域性能,所以一直是研究的熱門題目之一,使得光纖通訊可以在這短短三十多年中快速發展。最近這幾年,人們對於有線通訊或者是無線通訊的頻寬要求是越來越高,其中光纖通訊提供了多項的優點,包括了訊號傳遞的低損耗、高頻寬和安全性等,所以光纖通訊成為了提升通訊品質的重要技術。
    我們分別以理論分析和VPItrassmissionMaker5.2模擬,最後用實驗證明出一個具有創新整合性之被動光學網路-微波光纖系統,在此系統同時提供被動光學網路和毫米波通訊之全雙方服務。藉由利用光學載波抑制與分離技術(Optical carrier suppression and separation, OCSS),使得中心控制台欲傳送的10 Gbps基頻訊號和625 Mbps射頻訊號可以同時地下行至被動光學網路中。而用戶端可利用中心控制台,未載任何訊號的原始雷射光載波,作為使用者欲上傳資料至被動光學網路之載波。在光纖通訊系統所能容忍之誤碼率 ,下行訊號和上傳訊號經25公里標準單模光纖傳輸後,其光訊號的功率代償皆小於1 dB。在此被動光學網路-微波光纖系統中,我們使用有別於傳統解調方法,使用光子封包偵測對於射頻訊號進行解調,則解調出訊號的品質,經由VPItrassmissionMaker5.2模擬後,發現與傳統解調方法差不多。混和式被動光學網路-微波光纖系統,可以提供網際網路、有線電視和有線電話使用,也可當作傳輸微波訊號作為中心控制台與基地台之間的橋梁,故此系統之研究的可以增進對於光纖通訊的發展。
    在對被動光學網路的維護下,我們在研究中也使用光纖布拉格光柵來當作光學感測器,對於我們研究之系統來進行監控,使得在整體系統中可以達到正常運作的功能。


    誌謝 i 摘要 .ii 目錄 .iii 圖目錄 ..v 第一章 緒論 1-1前言.....................................................................................................................................1 1-2被動光學網路( Passive Optical Network, PON)..................................................................1 1-3微波光纖( Radio over Fiber, RoF)........................................................................................4 1-4 網路拓樸............................................................................................................................5 1-5研究動機.............................................................................................................................7 第二章 光學載波抑制與分離(Optical Carrier Suppression and Separation, OCSS)技術之原理與 應用 2-1光學載波抑制與分離技術.................................................................................................8 2-1.1馬赫-詹德調變器(Mach-Zehnder Modulator, MZM)工作原理.............................8 2-1.2光學載波抑制與分離技術操作理論.....................................................................11 2-2無上傳光源之雙向通訊系統在被動光學網路中............................................................16 2-3射頻訊號與基頻訊號在被動光學網路系統....................................................................18 第三章 利用光學載波抑制與分離技術在創新的被動光學網路作雙向傳輸射頻訊號/基頻訊號 3-1系統元件介紹和元件工作原理.......................................................................................20 3-1.1光學間隔器(Optical Interleaver)...........................................................................20 3-1.2 光學環行器(Optical Circulator)...........................................................................24 3-1.3 光纖布拉格光柵(Fiber Bragg Grating, FBG).......................................................26 3-1.4 光接收機(Photo-receiver, PD).............................................................................28 3-2 光子封包偵測(Photonic Envelope Detector).................................................................31 3-3 系統架構..........................................................................................................................33 3-4 系統原理..........................................................................................................................35 第四章 系統之模擬及實驗 4-1 系統模擬..........................................................................................................................39 4-2 系統實驗量測..................................................................................................................51 4-3 系統的優點......................................................................................................................64 第五章 光學感測器網路 5-1 前言..................................................................................................................................66 5-2 研究動機..........................................................................................................................66 5-3 光纖布拉格光柵感測器..................................................................................................67 5-3.1 光纖布拉格光柵以及光纖之優點.......................................................................68 5-3.2 光纖布拉格光柵之應力效應和溫度效應...........................................................70 5-4 光學感測器網路..............................................................................................................72 第六章 結論...................................................................................................................................85 Reference.................................................................................................................................87

    [1] Oladeji Akanbi, Jianjun Yu and Gee-Kung Chang, “A new bidirectional WDM-PON using DWDM channels generated by optical carrier suppression and separation technique,” ECOC 2005 Proceeding, vol. 3, pp. 447-448, 2005.
    [2] A. Kim, Y. Hun Joo, and Y.Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consumer Electron., vol. 50, pp. 517-520, 2004.
    [3] Chang-Joon Chae, et, al, ”A PON system suitable for internetworking optical network units using a fiber bragg grating on the feeder fiber,” IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1686-1688, 1999.
    [4] Chang-Joon Chae, and Nam-Hyun Oh, ”WDM/TDM PON system employing a wavelength-selective filter and a continuous-wave shared light source,” IEEE Photonics Technology Letters, vol. 10, no. 9, pp. 1325-1327, 1998.
    [5] C.W. Chowa, C.H. Yeh, ” Signal remodulation without power sacrifice for carrier distributed hybrid WDM-TDM PONs using PolSK,” Optics Communications 282, pp. 1294-1297, 2009.
    [6] Hyuk-Choon Kwon, Yong-Yuk Won, Dae-Won Lee, and Sang-Kook Han, ” WDM passive optical network with simultaneous wireline/wireless downlink transmission and wavelength reuse for uplink connection,” ICTON., vol. 6 pp. 9-11, 2007.
    [7] K.Oda, N.Takato, H.Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” Journal of Lightwave Technology, vol. 6, pp. 1016-1023, 1988.
    [8] Nathan J. Gomes, Maria Morant, Arokiaswami Alphones, Béatrice Cabon, John E. Mitchell, Christophe Lethien, Mark Csörnyei, Andreas Stöhr and Stavros Iezekiel, ”Radio-over-fiber transport for the support of wireless broadband services,” Journal of Optical Networking, vol. 8, no. 2, pp. 156-178, 2009.
    [9] Lin Xu, Chao Li, C. W. Chow and Hon Ki Tsang,” Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon micro-resonator filter,” IEEE Photonics Technology Letters, vol. 21, no. 4, pp. 209-211, 2009.
    [10] Christina Lim, Ampalavanapillai Nirmalathas, Masuduzzaman Bakaul, Ka-Lun Lee, Dalma Novak, and Rod Waterhouse, ”Mitigation strategy for transmission impairments in millimeter wave radio-over-fiber networks,” Journal of Optical Networking, vol. 8, no. 2, pp. 201-214, 2009.
    [11] Jianping Yao, ”Microwave photonics,” Journal of Lightwave Technology, vol. 27, no. 3, pp. 314-335, 2009.
    [12] Arokiaswami Alphones ”Double-spread radio-over-fiber system for next-generation wireless technologies,” Journal of Optical Networking, vol.8, no. 2, pp. 225-234, 2009.
    [13] Q. Chang, Y. Tian, J. Gao, T. Ye, Q. Li, and Y. Su, “Generation and transmission of optical carrier suppressed-optical differential (Quadrature) phase-shift keying (OCS-OD(Q)DPSK) signals in radio over fiber systems,” Journal of Lightwave Technology, vol. 26, no. 15, pp. 2611-2618, 2008.
    [14] Tomohiro Taniguchi, Naoya Sakurai, Kiyomi Kumozaki, and Takamasa Imai, ” Full-duplex 1.0 Gbit/s data transmission over 60 GHz radio-on-fiber access system based on the loop-back optical heterodyne technique,” Journal of Lightwave Technology, vol. 26, no. 13, pp. 1765-1776, 2008.
    [15] Xianbin Yu, Jesper Bevensee Jensen, Darko Zibar, Christophe Peucheret, and Idelfonso Tafur Monroy, ”Converged wireless and wireline access system based on optical phase modulation for both radio-over-giber and baseband signals,” IEEE Photonics Technology Letters, vol. 20, no. 21, pp. 1814-1816, 2008.
    [16] J.J Vegas Olmos, Toshiaki Kuri, Takahiro Sono, Kazunori Tamura, Hiroyuki Toda and Ken-ichi Kitayama, “Reconfigurable 2.5-Gb/s baseband and 60-GHz (155-Mb/s) millimeter-waveband radio-over-fiber (Interleaving) access network”, IEEE Journal of Lightwave Technology, vol. 26, no. 15, pp. 2506-2512, 2008.
    [17] Jianjun Yu, Zhensheng Jia, Ting Wang, and Gee-Kung Cheng, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photonics Technology Letters, vol. 19, no.3, pp. 140-142, 2007.
    [18] Chun-Ting Lin, Jason (Jyehong) Chen, Peng-Chun Peng, Cheng-Feng Peng, Wei-Ren Peng, Bi-Shiou Chiou, and Sien Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photonics Technology Letters, vol. 19, no. 8, pp. 610-612, 2007.

    [19] Chun-Ting Lin, Wei-Ren Peng, Peng-Chun Peng, Jason (Jyehong) Chen, Cheng-Feng Peng, Bi-Shiou Chiou and Sien Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2481-2483, 2006.
    [20] Linghao Cheng, Sheel Aditya, Zhaohui Li and Ampalavanapillai Nirmalathas, ”Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach–Zehnder external modulator,” IEEE Journal of Lightwave Technology, vol. 24, no. 6, pp. 2296-2304, 2006.
    [21] Rakesh Sambaraju, Jesus Palaci, Valentin Polo and Juan Luis Corral, ”Photonic envelope detector for broadband wireless signals using a single Mach-Zehnder modulator and a fibre bragg grating,” ECOC, vol. 5, pp. 213-214, 2008.
    [22] K. Prince, I. T. Monroy, J. Seoane and P. Jeppsen, “All-optical envelop detection for radio-over-fiber links using external optical injection of a DFB laser,” Optics Express, vol. 16, no. 3, pp. 2005-2014, 2008.
    [23] Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K.P.Koo, C. G. Askins, M. A. Putnam and E. Joseph Friebele,“Fiber grating sensors, ” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442-1463, 1997.
    [24] Jharna Mandal, Suchandan Pal, Tong Sun, Kenneth T. V. Grattan, Andreas T. Augousti and Scott A. Wade, ”Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 218-220, 2004.
    [25] Hao-Jan Sheng, Ming-Yue Fu, Tzu-Chiang Chen, Wen-Fung Liu and Sheau-Shong Bor, ”A lateral pressure sensor using a fiber bragg grating,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1146-1148, 2004.
    [26] Yang Zhao and Farhad Ansari, ”Intrinsic single-mode fiber-optic pressure sensor,” IEEE Photonics Technology Letters, vol. 13, no. 11, pp. 1212-1214, 2001.
    [27] J. L.Wagener, P. F.Wysocki, M. J. F. Digonnet and H. J. Shaw, “Effects of concentration and clusters in erbium-doped fiber lasers,” Optical Society of America Optics Letters, vol. 18, no. 23, pp. 2014–2016, 1993.
    [28] X.Dong, N.Q. Ngo, P.Shum, B.O. Guan, H.Y. Tam and X.Dong, “Concentration-induced nonuniform power in tunable erbium-doped fiber lasers,” Optical Society of America Optics Letters, vol. 29, no. 4, pp. 358–360, 2004.
    [29] Peng-Chun Peng, Kai-Ming Feng, Wei-Ren Peng, Hung-Yu Chiou, Ching-Cheng Chang and Sien Chi, “Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA,” Optics Communications, vol. 252, pp. 127-131, 2005.
    [30] Peng-Chun Peng, Kai-Ming Feng, Ching-Cheng Chang, Hung-Yu Chiou , JyeHong Chen, Ming-Fang Huang, Hung-Chang Chien, Sien Ch, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Optics Communications, vol. 259, pp. 200-203, 2005.
    [31] Yasukazu Sano and Toshihiko Yoshino, Member, ” Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber bragg grating sensors,” Journal of Lightwave Technology, vol. 21, no. 1, pp. 132-139, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE