研究生: |
郭彥甫 |
---|---|
論文名稱: |
Al-Cr-Fe-Mn-Ni高熵合金變形及退火行為之研究 The Deformation and Annealing Behaviors of Al-Cr-Fe-Mn-Ni High-Entropy Alloys |
指導教授: |
葉均蔚
孫道中 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 高熵合金 、變形 、退火 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AlxCrFe1.5MnNi0.5合金系統 ( x = 0.3,0.5 ) [34],擁有極佳的高溫時效硬化能力,且經過高溫時效200 h仍未見軟化,為傳統合金罕見,又其加工性良好,高溫硬度高且耐氧化。本篇論文針對上述系統總加工量達80 %的滾壓材進行退火處理後,探討其退火行為。
Al0.3CrFe1.5MnNi0.5 ( Al-0.3 )合金於500 ~ 900℃退火有明顯的析出強化現象;Al0.5CrFe1.5MnNi0.5 ( Al-0.5 )合金則於500 ~ 800℃退火也有此析出強化現象,此現象由Cr5Fe6Mn8 (ρ相)析出物所貢獻。兩合金退火後硬度最高可達Hv 950以上。藉由DTA熱分析,Al-0.3合金於542℃與910℃分別有ρ相析出的放熱峰與ρ相回溶的吸熱峰;Al-0.5合金則於350℃出現一橫跨400℃的ρ相析出放熱峰且於811℃有ρ相回溶的吸熱峰。可與退火硬度相互驗證。
經退火微結構與微硬度的觀察可得,Al-0.3退火初期為BCC基地相析出ρ相而達初期析出硬化,退火中期則是基地相之BCC顆粒相再結晶而造成退火軟化,退火後期則是FCC散佈相產生相變化並析出ρ相而展現再析出硬化的效應。Al-0.5退火初期為BCC基地相析出ρ相而強化,退火中期的軟化則為原先單一微結構,產生雙相結構而軟化,退火後期則是ρ相大量析出,而產生再析出強化的現象。
1.A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27, 10, 1796-1799, (1998).
2.A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions, JIM, 30, 9, 722-725, (1989).
3.A. Inoue, T. Zhang and T. Masumoto, , Materials Transactions, JIM, 31, 3, 177-183, (1999).
4.A. Inoue and T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120.
5.A. Peker and W. L. Johnson, Applied Physics Letters, 63, 17, 2342-2344, (1993).
6.A. Inoue, T. Zhang, K. Ohba and T. Shibata, Materials Transactions, JIM, 36, 7, 876-878, (1995).
7.A. Inoue and J. S. Gook, Materials Transactions, JIM, 36, 10, 1282-1285, (1995).
8.A. Inoue, N. Nishiyama and T. Matsuda, Materials Transactions, JIM, 37, 2, 181-184, (1996).
9.Y. He, T. D. Shen, and R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 29, 7, 1795-1804, (1998).
10.T. Zhang and A. Inoue, Materials Transactions, JIM, 39, 10, 1001-1006, (1998).
11.A. Inoue and T. Zhang, Materials Transactions, JIM, 40, 301, (1999).
12.A. Inoue, T. Zhang and A. Takeuchi, Applied Physics Letters, 71, 4, 464-466, (1997).
13.A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions, JIM, 33, 10, 937-945, (1992).
14.A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, Materials Transactions, JIM, 34, 4, 351-358, (1993).
15.A. Inoue and T. Zhang, Materials Transactions, JIM,37, 2, 185-187, (1996).
16.A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM, 38, 2, 179-183, (1997).
17.A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publications, Zurich, 28, (1999).
18.A. Inoue and N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 226, JUN, 401-405, (1997).
19.D. V. Louzguine and A. Inoue, Materials Letters, 39, 211-214, (1999).
20.L. Q. Xing, C. Bertrand, J. P. Dallas and M. Cornet, Materials Science and Engineering, A214, 216-225, (1998).
21.D. Szewieczek, J. Tyrlik-Held, S. Lesz, Journal of Materials Processing Technology, 109 , 190-195,(2001).
22.黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996.
23.賴高廷,“高亂度合金微結構及性質探討”, 國立清華大學材料科學工程研究所碩士論文, 1998.
24.許雲翔,“以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 2000.
25.洪育德,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討”, 國立清華大學材料科學工程研究所碩士論文, 2001.
26.陳家裕,”塗層用多元高熵合金之開發”, 國立清華大學材料科學工程研究所碩士論文, 2002.
27.童重縉,“Cu-Co-Ni-Cr-Al-Fe高熵合金變形結構與高溫特性之
研究”, 國立清華大學材料科學工程研究所碩士論文, 2002.
28.蔡哲瑋,“CuCoNiCrAlxFe高熵合金加工變形及微結構之探
討”,國立清華大學材料科學工程研究所碩士論文, 2003.
29.許經佑,“B的添加對CuCoNiCrAl0.5Fe高熵合金微結構與高溫特性之研究”,國立清華大學材料科學工程研究所碩士論文, 2003.
30.黃炳剛,“多元高熵合金於熱熔射塗層之研究”,國立清華大學材料科學工程研究所碩士論文, 2003.
31.林佩君,“高頻軟磁高熵合金濺鍍薄膜之開發研究”,國立清華大學材料科學工程研究所碩士論文, 2003.
32.蔡銘洪,“多元高熵合金薄膜微結構及電性演變之研究”,國立清華大學材料科學工程研究所碩士論文, 2003.
33.陳敏睿,“添加V、Si、Ti對Al0.5CrCuFeCoNi高熵合金微結構與磨耗性質之影響”,國立清華大學材料科學工程研究所碩士論文, 2003.
34.陳宣佑,“Al-Cr-Fe-Mn-Ni高熵合金變形與退火行為之研究”,國立清華大學材料科學工程研究所碩士論文, 2004.
35.M. Winter, WebElementsTM Periodic Table, Professional Edition, http://www.webelements.com, University of Sheffield, UK, 2000.
36.G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company,
114-137.
37.J. Kramer, Z. Phys., 37, 639, (1934).
38.J. Kramer, Annln Phys., 37, 19, (1934).
39.A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur.Stand., 44, 109, (1950).
40.P. Duwes, Trans. Am. Soc. Metals, 60, 607, (1967).
41.H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 45, 6, 615-616,( 1984).
42.H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review ofMaterials Science, 10, 363-391, (1980).
43.B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, 61-2, Jan, 391-395, (1984).
44.Carlisle and H. Ben, Machine Design, 58, 1, 24-30, (1986).
45.H. Jones, Rapid Solidification of Metals and Alloys, Inst. of Metallurgists, London, 1982.
46.F. G. Yost, Journal of Materials Science, 16, 11, 3039-3044, (1981).
47.P. Haasen, "Metallic Glasses", Journal of Non-Crystalline Solids, 56, 1-3, 191-199, (1983).
48.J. R. Davis (Ed.), Metals Handbook, 10th edn., Vol. 1, ASM International, Metals Park, OH, 1990
49.F. Habiby, Ph.D., A. ul Haq, Ph.D, and A.Q. Kahn, Ph.D., "The Properties and Applications of 18% Nical Maraging Steels", Journal of Mat. Tech., 1994 9:246-252.
50.R. F. Decker and S. Floreen, Recent Developments and Application. R. K. Wilson, ed. The Minerals, Metals and Materials Society, p. 1 (1998).
51.D, M. Vanderwalker, Met. Trans. A, 18:1191 (1987)
52.R. K. Wilson ed., Recent Developments and Application, The Minerals, Metals and Materials Society, p. 39,125, and 295 (1988)
53.L. V. Tarasenko, N. V. Zviginstev, Z.M. Rulina, and M. S. Khadyev, Phys. Met. Metall, 59:124 (1985)
54.B. Z. Weiss, Proc. Int. Conf. on Recent Development in Specialty Steels and Hard Materials, South Africa. N. R. Comins and J. B. Clark, eds., Pergamon Press, p. 35 (1988)
55.J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang,“Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Meterials 2004, 6, No. 5, p. 299 – 303.