簡易檢索 / 詳目顯示

研究生: 賴威名
Lai, Wei-Ming
論文名稱: 整合磁場集中器於異向性磁阻結構實現具出平面磁場感測之元件
Integrate Magnetic Flux Concentrator with AMR Structures for Out-of-plane Magnetic Field Sensor
指導教授: 方維倫
Fang, Weileun
口試委員: 賴梅鳳
吳名清
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 磁阻感測器磁場集中器磁場轉移
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出整合磁場集中器於異向性磁阻結構以實現具出平面磁場感測之元件,藉由磁場集中器將出平面磁場轉移為同平面磁場及透過磁阻結構感測,並提出柱狀結構陣列之磁場集中器設計以增強其磁場轉移效能。研究內容包含磁阻感測器感測原理的理論介紹及磁場集中器之磁場轉移能力之理論推導和模擬分析。元件製程方面透過光阻作為模具並以電鍍製程製作磁場集中器之金屬鎳結構並整合於異向性磁阻結構,研究也實際透過半導體製程設備製作出元件。元件測試的部分,透過靜態量測元件之幾何特性及磁性材料之磁特性驗證設計之效能,並透過感測性能之量測實際將元件置於磁場中量測,驗證本研究所開發之元件可行性。


    This thesis presents integrate magnetic flux concentrator with AMR structures for out-of-plane magnetic field sensor. Through the magnetic flux concentrator, the out-of-plane magnetic field will convert to in-plane magnetic field, and this study proposes magnetic pillar array to be magnetic concentrator to improve it efficacy. This study contains the sensing mechanism of the magnetoresistive sensor and the theoretical derivation and simulation of the magnetic concentrator. In fabrication process, it is using photoresist to be a mold and electroplating the nickel pillars to implement magnetic pillar array. Finally through the static measurement to check the geometry properties and magnetic properties and the performance test to verify the feasibility of the component.

    目錄 目錄 iii 圖目錄 v 表目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 霍爾效應感測器 3 1-2-2 異向性磁阻磁力計 6 1-3 研究動機 9 第二章 元件設計 23 2-1 異向性磁阻感測器 23 2-1-1 操作原理 23 2-1-2感測器性能 24 2-2 磁場集中器 26 2-2-1 柱狀磁場集中器 26 2-2-2 圓柱形磁場集中器 27 2-2-3磁場集中器陣列 29 2-3 元件性能設計 30 第三章 製程流程與結果 40 3-1 製程流程 40 3-2 製程結果 41 第四章 元件量測 51 4-1 靜態量測 51 4-2元件性能量測 53 4-3結果討論 55 第五章 結論與未來工作 69 5-1研究成果 69 5-2未來工作 70 參考文獻 77

    [1] P. Ripka, “Magnetic sensors and magnetometers,” 2001.
    [2] J. Lenz and A.S. Edelstein, “Magnetic sensors and their applications,” IEEE Sensors Journal, 2006.
    [3] 曾晉沅, “以SOI晶片實現微機電共振式磁力計,” 國立清華大學動力機械工程學系碩士論文, 2012.
    [4] E.H. Hall, “On a new action of the magnet on electric currents,” American Joirnal of Mathematics, 1879.
    [5] R.S. Popovic, J.A. Flanagan, P.A. Besse, “The future of magnetic sensors,” Sensors and Actuators, 1996.
    [6] R. Kyburz, J. Schmid, R.S. Popovic, “Highly Sensitive In0.53Ga0.47As/InP Hall Sensors Grown by MOVPE,” IEEE Transactions on Electron Devices, 1994.
    [7] M. Epstein, R.B. Schulz, “Magnetic-field pickup for low-frequency radio-interference measuring sets,” Institute of Radio Engineers Transactions on Electron Devices, 1961.
    [8] P. Leroy, C. Coillot, A.F. Roux, and G.M. Chanteur, “High magnetic field amplification for improving,” IEEE Sensors Journal, 2006.
    [9] http://www.asahi-kasei.co.jp/akm/en/product/ak8975b/ak8975b.html
    [10] http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00213470.pdf
    [11] R.S. Popovic, “The Vertical Hall-effect device,” IEEE Electric Device Letters, 1984.
    [12] R. Sunier, P. Monajemi, F. Ayazi, T. Vancura, H. Baltes, O. Brand, “Precise Release and Insulation Technology for Vertical Hall Sensors and Trench-Defined MEMS,” IEEE Sensors, 2004.
    [13] H.V. Estrada, “A MEMS-SOI 3D-magnetic field sensor,” IEEE MEMS, 2011.
    [14] R.S. Popovic, P.M. Drljaca, C. Schott, R. Racz, “Integrated hall sensor/magnetic flux concentrator microsystems,” MIDEM, 2001.
    [15] http://proj3.sinica.edu.tw/~chem/servxx6/files/paper_2735_1231482839.pdf
    [16] J. Lenz, G.F. Rouse, L.K. Strandjord, B.B. Pant, A. Metze, H.B. French, E.T. Bensor, D.R. Krahn, “A high-sensitivity magnetoresistive sensor,” Technical Digest of the Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 1990.
    [17] W. Gopel, J. Hesse, J.N. Zemel, “Sensors,” 1989.
    [18] K.E. Kuijk, W.J. van Gestel, F.E. Gorter, “The barber pole, a linear magnetoresistive head,” IEEE Transactions on Magnetics, 1975.
    [19] D.J. Mapps M.L. Watson, N. Fry, “A double bifilar magneto-resistor for earth'sfield detection,” IEEE Transactions on Magnetics, 1987.
    [20] F.C.S. da Silva, S.T. Halloran, L. Yuan, D.P. Pappas, “A z-component magnetoresistive sensor,” Applied Physics Letters, 2008.
    [21] M. Suzuki, T. Fukutani, T. Hirata, S. Aoyagi, S. Shingubara, H. Tajiri, Y. Yoshikawa, T. Nagahata, “Triaxis magnetoresistive (MR) sensorusingpermalloy plate of distorting magnetic field,” IEEE MEMS, 2010.
    [22] Y. Cai, C. Byun, Y. Zhao, L. Jiang, “Monolithic tri-axis AMR sensor and manufacturing method thereof,” U.S. Patent No. 0206137 A1, 2012
    [23] T.R. McGuire, R.I. Potter, “Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys,” IEEE Transactions on Magnetics, 1975.
    [24] W. Kwiatkowski, S. Tumanski, “The permalloy magnetoresistive sensors-properties and applications,” J. Phys, 1986.
    [25] J.I. Martiın, J. Nogues, K. Liu, J.L. Vicente, I.K. Schuller, “Ordered magnetic nanostructures: fabrication and properties,” J. Magnetism. Magnetic Material, 2003.
    [26] L. Piraux, S. Dubois, E. Ferain, R. Legras, K. Ounadjela, J.M. George, J.L. Maurice , A. Fert, “Anisotropic transport and magnetic properties of arrays of sub-micron wires,” J. Magnetism. Magnetic Material, 1997.
    [27] M. Sato, Y. Ishii, “Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder,” J. Appl. Phys., 1989.
    [28] A. D. Butherus, S. Nakahara, “Annealing Kinetics of Thin Permalloy Films,” IEEE Transactions on Magnetics, 1985.
    [29] S. Krongelb, A. Gangulee, G. Das, “Annealing of Thin Magnetoresistive Permalloy Films,” IEEE Transactions on Magnetics, 1973.
    [30] N. A. Stutzke, S. E. Russek, D. P. Pappas, “Low-frequency noise measurements on commercial magnetoresistivemagnetic field sensors,” Applied Physics Letters, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE