簡易檢索 / 詳目顯示

研究生: 張光甫
Kuang-Fu Chang
論文名稱: 三相升壓型比例共振控制整流器之設計與製作
Design and Implementation of a Proportional-Resonant Control Three Phase Boost Rectifier
指導教授: 潘晴財
Ching-Tsai Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 117
中文關鍵詞: 解析公式比例積分控制器比例共振控制器
外文關鍵詞: analytic formula, proportional-integral controller, proportional-resonant controller
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三相升壓型脈寬調變交/直流轉換器具有高功率因數、低輸入電流總諧波失真與低輸出電壓漣波之優點,因此極適合作為高性能大功率直流輸出電源或應用於交/交流轉換器之前級部分以作為中間直流鏈接介面。因此,本論文主要目標即在針對此種高性能轉換器之設計加以深入研究。首先,針對此轉換器特性加以分析,再進一步探討轉換器主要電感、電容參數大小與其動態響應之關係,由開迴路轉移函數之零交越頻率與電感關係提出一電感值之解析公式。其次,進一步利用本論文首度提出之能量因數指標以獲得電容值之解析公式;藉由上述二解析公式吾人可以快速得到所需之電容與電感參數值。再者,鑑於習用三相升壓型交/直流轉換器之控制器均採用同步旋轉框比例積分控制器,此控制器必須執行座標轉換與反轉換之計算,增加運算複雜度,而定子框比例積分控制器雖不需經過座標轉換,卻會有穩態誤差的產生,因此本論文改採用新近文獻上不需座標轉換且擁有零穩態誤差優點之比例共振控制器,同時結合前饋控制器,可以達到系統之快速動態響應。最後,依據前述結果設計並實體製作一雛形電路,以驗證其參數設計與控制策略之有效性。雛型中控制器則是採用數位訊號處理器TMS320 F2812以數位化方式實現,以簡化硬體電路及便於維護。


    Due to the advantages of high power factor, low input current harmonic distortion and low output voltage ripple, three phase boost PWM ac/dc converters are very suitable for high performance high power sources or as a dc-link of an ac/ac converter. Therefore, the goal of this thesis is to further explore a more effective design method of this high performance converter.
    Major contributions of this thesis may be summarized as follows. First, the characteristic of this system is comprehensively analyzed. Then the relation between parameter values and dynamic response characteristic of this system is analyzed and an analytic formula of inductor parameter is derived by considering the crossover frequency of the system open-loop transfer function. In addition, an energy factor is proposed, for the first time, in this thesis and another analytic formula of capacitor parameter is derived based on this new factor. It follows that design of the parameters of inductor and capacitor becomes a simple calculation according to the formulas. Second, although a proportional -integral (PI) controller in the synchronous frame can be adopted for the converter to achieve zero steady-state error, the time consuming process of repeated coordinate transform and inverse transform is rather inefficient for the controller. On the other hand, the recently developed proportional-resonant (PR) controller has the advantage of achieving zero steady-state error without coordinate transformations. Hence, the PR control together with another feedforward control is adopted as the controller of the converter system to achieve high performance. At last, a prototype is constructed to verify the effectiveness of the proposed parameter design and the control strategy. The system controller is implemented digitally with a DSP, namely TMS320 F2812, to simplify the hardware circuit and for convenient maintenance.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 本論文之貢獻 7 1.4 本論文之內容概述 8 第二章 三相升壓型整流器之數學模式與參數設計 10 2.1 前言 10 2.2 三相升壓型整流器數學模式之推導 11 2.2.1 狀態平均模式之推導 11 2.2.2 動態模式與等效電路之推導 21 2.3 轉換器L、C參數之基本限制條件 25 2.3.1 輸出電壓 之邊界條件 25 2.3.2 升壓電感L之邊界條件 27 2.3.3 輸出端電容C之邊界條件 28 2.3.4 參數L、C之基本限制範圍 30 2.4 小訊號模式分析、轉換器系統能量因數之定義與L、C參數之設計 32 2.4.1 小訊號模式分析 32 2.4.2 轉換器系統能量因數之定義 43 2.4.3 電感與電容參數之設計 51 第三章 比例共振型回授控制與模擬結果 56 3.1 前言 56 3.2 不同座標系統之比例積分型回授控制原理 56 3.3 比例共振型回授控制 67 3.4 模擬結果比較 71 第四章 雛型製作 83 4.1 前言 83 4.2 實體電路製作 83 4.2.1 電力電路 85 4.2.2 控制電路 86 4.3 閉迴路控制器之實現 94 4.4 實測結果 97 第五章 結論 103 參考文獻 106 附錄A 模擬資料 113 附錄B 拉氏轉換通式之證明 116

    [1] J. W. Choi, and S. K. Sul, “Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling”, IEEE Trans. Power Electronics, vol. 13, pp.179- 185, Jan. 1998
    [2] J. A. Torrico and E. Bim, “Fuzzy logic space vector current control of three-phase inverters”, IEEE PESC ’00, Power Electronics Specialists Conference, vol. 1, pp. 147– 152, Jun. 2000
    [3] S. R. Bowes, S. Grewal and D. Holliday, “Novel adaptive hysteresis band modulation strategy for three-phase inverters”, IEE Proc. Electric Power Applications, vol. 148, pp. 51– 61, Jan. 2001.
    [4] D. Amato, A. Tonielli and A. Tilli, “ An improved sequential hysteresis current controller for three-phase inverter:design and hardware implementation”, Proceedings of the 2001 IEEE International Conference on Control Applications ,2001. (CCA '01), pp. 294 –300, Sept. 2001.
    [5] B. R. Lin, “High power factor AC/DC/AC converter with random PWM”, IEEE Trans. Aerospace and Electronic Systems, vol. 35, pp. 935- 943, Jul. 1999.
    [6] J. F. Silva, “Sliding-mode control of boost-type unity-power -factor PWM rectifiers”, IEEE Trans. Industrial Electronics, vol. 46, pp. 594- 603, Jun. 1999.
    [7] K. Nishimura, K. Atsuumi, K. Tachibana, K. Hirachi, S Moisseev, M. Nakaoka, “Practical performance evaluations on an improved circuit topology of active three-phase PFC power converter”, Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE ,vol. 2, pp. 1308- 1314, Mar. 2001.
    [8] C. T. Pan, and J. J. Shieh, “A family of closed-form duty cycle control laws for three-phase boost AC/DC converter”, IEEE Trans. Industrial Electronics, vol. 45, pp. 530- 543, Aug. 1998.
    [9] C. T. Pan, and J. J. Shieh, “ROM-based current controller for three-phase boost-type AC/DC converter”, IEE Proc. Electric Power Applications, vol. 145, pp. 544- 442, Nov. 1998.
    [10] J. J. Shieh, C. T. Pan, Z. J. Cuey, “Modelling and design of a reversible three-phase switching mode rectifier“, IEE Proc., Electric Power Applications, vol. 144, pp. 389- 396, Nov. 1997.
    [11] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers”, IEEE PESC ’89 Record., Power Electronics Specialists Conference, vol.1, pp. 58- 66, Jun. 1989.
    [12] C. T. Pan, and M. C. Jiang, “Control and implementation of a three-phase voltage-doubler reversible AC to DC converter”, IEEE PESC '95 Record., Power Electronics Specialists Conference, vol.1, pp. 437- 443, 1995.
    [13] M. Hengchun, D. Boroyevich, A. Ravindra, and F.C. Lee, “Analysis and design of high frequency three-phase boost rectifiers“, Applied Power Electronics Conference and Exposition, 1996. APEC '96. Conference Proceedings 1996., Eleventh Annual , vol.2, pp. 538- 544, Mar. 1996.
    [14] J. M. Carrasco, E. Galvan, G. Escobar, A. M. Stankovic, and R. Ortega, “Direct active and reactive power control (DPQ) for a three phase synchronous rectifier“, IEEE PESC '00, Power Electronics Specialists Conference, vol.2, pp. 737- 742, Jun. 2000.
    [15] Y. J. M. Hengchun, F. C. Lee, and D. Borojevic, ”Simple high performance three-phase boost rectifiers“, IEEE PESC '94 Record., Power Electronics Specialists Conference, vol.2, pp. 1158- 1163, Jun. 1994.
    [16] S. Fukuda, and K. Koizumi, “Optimal control of a three phase boost rectifier for unity power factor and reduced harmonics”, IEEE Proc. of 1995 International Conference, Power Electronics and Drive Systems, vol.1, pp. 34-39, Feb. 1995.
    [17] J. W. Dixon, and B. T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier”, IEEE Trans. Industrial Electronics, vol.35, pp. 508- 515, Nov. 1988.
    [18] S. Manias, “Novel full bridge semicontrolled switch mode rectifier”, IEE Proc. B, Electric Power Applications, vol.138, pp. 252- 256, Sept. 1991.
    [19] Y. K. Lo, and C. L. Chen, “A voltage-mode controlled high -input-power-factor AC line conditioner with minimized output voltage harmonics”, IEEE PESC '94 Record., Power Electronics Specialists Conference, vol.1, pp. 369- 374, Jun. 1994.
    [20] B. G. Gu, and K. Nam, “A Theoretical minimum DC-link capacitance in PWM converter-inverter systems”, IEE Proc. Power Electronics Applications, vol.152, pp.81- 88, Jan. 2005.
    [21] 陳建智,「三相昇壓型主動式整流器之分析與L、C參數設計」,清華大學碩士論文,九十年七月。
    [22] 許文俊,「三相昇壓型主動式整流器之適應性定結構滑模控制」,清華大學碩士論文,九十一年七月。
    [23] 阮昱霖,「整合型高性能三相升壓型交直流轉換器」,清華大學碩士論文,九十二年七月。
    [24] Y. Sato, T. Ishizuka, K. Nezu, and T. Kataoka, “A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current”, IEEE Trans. Industry Applications, vol.34, May/Jun. 1998.
    [25] D. N. Zmood, D. G. Holmes, and G. H. Bode, “Frequency -domain analysis of three-phase linear current regulators”, IEEE Trans. Industry Applications, vol.37, pp 601- 610, Mar./Apr. 2001.
    [26] D. N. Zmood, and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error”, IEEE Trans. Power Electronics, vol.18 , pp. 814- 822, May 2003.
    [27] M. J. Newman, D. N. Zmood, and D. G. Holmes, “Stationary frame harmonic reference generation for active filter systems”, IEEE Trans. Industry Applications, vol.38, pp. 1591-1599, Nov. /Dec. 2002.
    [28] E. Twining, D. G. Holmes, “Grid current regulation of a three -phase voltage source inverter with an LCL input filter ”, IEEE Trans. Power Electronics, vol.18, pp.888-895, May 2003.
    [29] X. Yuan, W. Merk, H. Stemmler, J. Allmeling, “Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions”, IEEE Trans. Industry Applications, vol.38, pp. 523- 532, Mar./Apr. 2002.
    [30] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, 2002.
    [31] IEC, Disturbances in supply systems caused by household appliances and similar electrical equipment, International Electrotechnical Commission Publication 555, Parts 1,2,and 3, 1992.
    [32] IEEE Std.519-1992, IEEE recommended practices and requirements for harmonic control in electrical power system, New York, 1993.
    [33] 蕭純育,「台電諧波管制標準之制定與執行,」電機技師,第59 期,第33~63頁,民國八十五年。
    [34] G. F. Franklin, J. D. Powell, M. Workman, Digital Control of Dynamic Systems, Addison-Wesley, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE