研究生: |
張品萱 Chang, Pin-Shiuan |
---|---|
論文名稱: |
可撓式碲化鉍系熱電厚膜模組製備研究 Fabrication and characterization of Bi-Te based thermoelectric module on a flexible substrate |
指導教授: |
廖建能
Liao, Chien-Neng |
口試委員: |
朱旭山
Chu, Hsu-Shen 陳軍華 Chen, Chun-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 熱電 、碲化鉍 、厚膜 、模組 |
外文關鍵詞: | thermoelectric, Bi2Te3, thickfilm, module |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碲化鉍系化合物在低溫環境具有極佳的熱電性質,是目前商用元件中最被廣泛應用的材料系統。而傳統塊材型熱電元件是由熱電材料與鍍製好電極的陶瓷基板相接組成,受到剛性基板的限制,不利於應用在不規則熱源上。相反地,在軟性基板上使用印刷技術製備的熱電厚膜模組具有可撓性,能有效從不規則熱源的表面收集熱能,適合用於低溫差的環境中製造低功率(μW-mW)的發電裝置。在本研究中,我們通過網版印刷製備了數十微米的p型(Bi-Sb-Te)和n型(Bi-Te-Se)熱電厚膜,在優化的熱壓製程處理後,p型及n型熱電厚膜的功率因數分別可達1.43 mW/K2m及0.84 mW/K2m。以同樣的熱處理條件,我們利用網印技術與熱壓製程在聚酰亞胺基板上製備由3對p/n接腳組成的水平型熱電模組,並通過濺鍍Ni/Ag雙層膜作為電極串接,該模組可在55 ℃的溫差下得到約6.09 mW/cm2的最佳功率密度輸出,換算成模組效率因子為2.02 μW/cm2·K2。另外,我們亦提出了一種新型的集熱端設計,除提高集熱效率外,更能提升水平型厚膜模組的實用性。
Bismuth telluride-based compounds have been widely employed in commercial thermoelectric devices because of their superior thermoelectric properties at low temperature regime. A typical thermoelectric generator consists of pairs of n- and p-type thermoelectric elements bonded between two ceramic substrates with metal connectors. However, most heat sources may have irregular-shaped surface in practical application scenario, which may cause a poor contact between the rigid thermoelectric devices and heat source. Conversely, the thermoelectric films printed on a flexible substrate is beneficial for harvesting thermal energy from the heat source with irregular contact schemes, and is highly suitable for making low-power (μW – mW) generators from environment with the presence of small temperature difference. In this study, we prepared both p-type (Bi-Sb-Te) and n-type (Bi-Te-Se) films of several tens of micrometer on a polyimide substrate by screen printing and pressured curing treatment. The p-type and n-type thermoelectric films exhibit a power factor of 1.43 mW/K2m and 0.84 mW/K2m, respectively, after optimizing process temperature and pressure. A planar thermoelectric module was demonstrated by preparing 3 pairs of thermoelectric legs on a polyimide substrate and were electrically connected by Ni/Ag bilayer stripes. The thick film module can achieve an output power density of 6.09 mW/cm2 under a temperature difference of 55 ℃, and have the thermoelctric efficiency factor about 2.02 μW/cm2·K2. In addition, we also proposed a newly designed module, which has high heat collection efficiency for improve energy harvesting applications.
[1] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105-114 (2008).
[2] J. Jiang, L. D. Chen, Q. Yao, S. Q. Bai, Q. Wang, Effect of TeI4 content on the thermoelectric properties of n-type Bi-Te-Se crystals prepared by zone melting. Mater. Chem. Phys. 92, 39-42 (2005).
[3] J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao, Q. Wang, Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Mater. 52, 347-351 (2005).
[4] S.-D. Kwon, B.-k. Ju, S.-J. Yoon, J.-S. Kim, Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition. J. Electron. Mater. 38, 920-924 (2009).
[5] M. Takashiri, T. Shirakawa, K. Miyazaki, H. Tsukamoto, Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sensor Actuat a-Phys 138, 329-334 (2007).
[6] Y. Zhou, L. L. Li, Q. Tan, J. F. Li, Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering. J. Alloys Compd. 590, 362-367 (2014).
[7] J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem.-Int. Edit. 48, 8616-8639 (2009).
[8] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, Thermoelectric properties of (BixSb1-x)2Te3 single-crystal solid-solutions grown by the thm method. J. Phys. Chem. Solids 53, 1121-1129 (1992).
[9] J. R. Drabble, C. H. L. Goodman, Chemical bonding in bismuth telluride. J. Phys. Chem. Solids 5, 142-144 (1958).
[10] G. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Physical Review B 76, 075201 (2007).
[11] J. Horak, K. Čermák, L. Koudelka, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47, 805-809 (1986).
[12] H. Noro, K. Sato, H. Kagechika, The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering. 73, 1252-1260 (1993).
[13] H. Choi, Y. J. Kim, C. S. Kim, H. M. Yang, M. W. Oh, B. J. Cho, Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials. Nano Energy 46, 39-44 (2018).
[14] Y. S. Jung, D. H. Jeong, S. B. Kang, F. Kim, M. H. Jeong, K. S. Lee, J. S. Son, J. M. Baik, J. S. Kim, K. J. Choi, Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 40, 663-672 (2017).
[15] H. Choi, S. J. Kim, Y. Kim, J. H. We, M. W. Oh, B. J. Cho, Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure. J. Mater. Chem. C 5, 8559-8565 (2017).
[16] W. K. Hou, X. L. Nie, W. Y. Zhao, H. Y. Zhou, X. Mu, W. T. Zhu, Q. J. Zhang, Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50, 766-776 (2018).
[17] D. Madan, A. Chen, P. K. Wright, J. W. Evans, Dispenser printed composite thermoelectric thick films for thermoelectric generator applications. J. Appl. Phys. 109, 034904 (2011).
[18] B. W. Boudouris, S. Yee, Structure, properties and applications of thermoelectric polymers. J. Appl. Polym. Sci. 134, 44256 (2017).
[19] K. V. Selvan, M. N. Hasan, M. S. Mohamed Ali, Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators. IEEE T. Electron Dev. 43, 113-140 (2018).
[20] B. Chen, M. Kruse, B. Xu, R. Tutika, W. Zheng, M. D. Bartlett, Y. Wu, J. C. Claussen, Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale 11, 5222-5230 (2019).
[21] K. K. Jung, Y. Jung, C. J. Choi, J. M. Lee, J. S. Ko, Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate. Curr. Appl. Phys. 16, 1442-1448 (2016).
[22] W. Glatz, E. Schwyter, L. Durrer, C. Hierold, Bi2Te3-based flexible micro thermoelectric generator with optimized design. J. Microelectromech S. 18, 763-772 (2009).
[23] X. Yu, Y. Wang, Y. Liu, T. Li, H. Zhou, X. Gao, F. Feng, T. Roinila, Y. Wang, CMOS MEMS-based thermoelectric generator with an efficient heat dissipation path. J. Micromech. Microeng. 22, 105011 (2012).
[24] C. J. An, Y. H. Kang, H. Song, Y. Jeong, S. Y. Cho, High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants. J. Mater. Chem. A 5, 15631-15639 (2017).
[25] K. Takayama, M. Takashiri, Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering. Vacuum 144, 164-171 (2017).
[26] B. Iezzi, K. Ankireddy, J. Twiddy, M. D. Losego, J. S. Jur, Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Appl. Energy 208, 758-765 (2017).
[27] T. Nguyen Huu, T. Nguyen Van, O. Takahito, Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl. Energy 210, 467-476 (2018).
[28] S. E. Jo, M. K. Kim, M. S. Kim, Y. J. Kim, Flexible thermoelectric generator for human body heat energy harvesting. Electron. Lett 48, 1015-1017 (2012).
[29] S. J. Kim, J. H. We, B. J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energ. Environ. Sci. 7, 1959-1965 (2014).
[30] W. Glatz, S. Muntwyler, C. Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sensor Actuat a-Phys 132, 337-345 (2006).
[31] F. M. Smits, Measurement of sheet resistivities with the four‐point probe. Bell Syst. Tech. J. 37, 711-718 (1958).
[32] 陳力祺,高效能印刷型碲化鉍系熱電厚膜與模組製備研究,國立清華大學 (2017).
[33] E. A. Marchenkov, V. P. Shipul', Thermal expansion of semiconductor materials. J. Eng. Phys. Therm. 66, 547-551 (1994).
[34] J. Navratil, Z. Starý, T. Plechacek, Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31, 1559-1566 (1996).
[35] H. Noro, K. Sato, H. Kagechika, The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering. J. Appl. Phys. 73, 1252-1260 (1993).
[36] Z. Yuan, X. Tang, Y. Liu, Z. Xu, K. Liu, Z. Zhang, W. Chen, J. Li, A stacked and miniaturized radioisotope thermoelectric generator by screen printing. Sensor Actuat A-Phys 267, 496-504 (2017).
[37] K. Kato, K. Kuriyama, T. Yabuki, K. Miyazaki, Organic-inorganic thermoelectric material for a printed generator. J. Phys. Conf. Ser. 1052, 012008 (2018).
[38] A. L. Pires, I. F. Cruz, J. Silva, G. N. P. Oliveira, S. Ferreira-Teixeira, A. M. L. Lopes, J. P. Araujo, J. Fonseca, C. Pereira, A. M. Pereira, Printed flexible mu-thermoelectric device based on hybrid Bi2Te3/pva composites. ACS Appl. Mater. Interfaces 11, 8969-8981 (2019).
[39] Y. J. Kim, S. J. Kim, H. Choi, C. S. Kim, G. Lee, S. H. Park, B. J. Cho, Realization of high-performance screen-printed flexible thermoelectric generator by improving contact characteristics. Adv. Mater. Interfaces 4, 1700870 (2017).
[40] S. S. Babu, M. L. Santella, Z. Feng, B. W. Riemer, J. W. Cohron, Empirical model of effects of pressure and temperature on electrical contact resistance of metals. Sci. Technol. Weld. Joining 6, 126-132 (2001).
[41] X. Zhao, W. Han, C. Zhao, S. Wang, F. Kong, X. Ji, Z. Li, X. Shen, Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl. Mater. Interfaces 11, 10301-10309 (2019).
[42] D. Madan, Z. Wang, P. K. Wright, J. W. Evans, Printed flexible thermoelectric generators for use on low levels of waste heat. Appl. Energy 156, 587-592 (2015).
[43] S. H. Park, S. Jo, B. Kwon, F. Kim, H. W. Ban, J. E. Lee, D. H. Gu, S. H. Lee, Y. Hwang, J. S. Kim, D. B. Hyun, S. Lee, K. J. Choi, W. Jo, J. S. Son, High-performance shape-engineerable thermoelectric painting. Nat. Commun. 7, 13403 (2016).
[44] T. Varghese, C. Hollar, J. Richardson, N. Kempf, C. Han, P. Gamarachchi, D. Estrada, R. J. Mehta, Y. Zhang, High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep. 6, 33135 (2016).
[45] J. P. Rojas, D. Conchouso, A. Arevalo, D. Singh, I. G. Foulds, M. M. Hussain, Paper-based origami flexible and foldable thermoelectric nanogenerator. Nano Energy 31, 296-301 (2017).