簡易檢索 / 詳目顯示

研究生: 彭健倫
Peng, Jian-Lun
論文名稱: 以角解析光電子能譜量測石墨能帶結構並以Tight-Binding理論模型描述
Band structure of graphite measured by angle-resolved photoemission spectroscopy and its description by a tight-binding model
指導教授: 崔古鼎
Tsuei, Ku-Ding
口試委員: 鄭弘泰
Jeng, Horng-Tay
陸大安
Luh, Dah-An
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: tight-binding石墨角解析光電子能譜
外文關鍵詞: tight-binding, graphite, ARPES
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳組成許多不同的物質,像是鑽石和石墨。但彼此之間最大的不同就是碳是導體而鑽石是絕緣體,原因就在於鍵結。鑽石中的碳原子彼此形成三維的sp3的共價鍵,而石墨在平面結構是二維的sp2鍵結的共價鍵,垂直方向自由的pz鍵結的金屬鍵形成 π 能帶,層與層之間微弱的凡得瓦力,使得石墨具導電性。
    石墨的研究已經幾十年了。在1981年M. S. Dresselhaus和G. Dresselhaus以tight-binding理論模擬石墨的能帶以及A. Grüneis在2008年以TB-GW描述石墨的能帶。在我的論文當中,我將會探討以角解析光電子能譜量測石墨的電子結構。不同於石墨烯是二維的結構,石墨是三維的結構, z ̂ 方向的位置不同會影響石墨能帶的變化。對於石墨能帶中兩個 π 鍵形成的價帶隨著入射的光子能量不同,對應在 z ̂ 當中位置的不同,進而影響兩個 π 價帶之間分裂、合併的週期關係。並且以tight-binding理論描述兩個 π 價帶所形成的費米面。我主要的目的是以tight-binding理論模擬出一套tight-binding參數對於束縛能較大即為較遠理費米能階的價帶做出好的模擬;並且,以此參數對束縛能較小即為較靠近費米能階的價帶做描述,觀察在束縛能小的能帶描述的狀況。


    Carbon composes lots of material, like diamond and graphite. But the biggest difference is that graphite is a conductor while diamond is an insulator, because of the bonding. The carbon atoms in the diamond hybridize into the three-dimension sp3 covalent bonding, however the carbon atoms hybridize into two-dimension sp2 covalent bonding in-plane and the delocalized pz bonding results in metallic bonding which forms the π band. The interaction between layer and layer is the weak van der Waals' force so that graphite is a conductor.
    Graphite has been researched for decades. M. S. Dresselhaus和G. Dresselhaus used the tight-binding theory to describe the band structure of graphite in 1981 and A. Grüneis used the TB-GW to describe the band structure of graphite. In my thesis I will discuss the electronic structure of graphite measured by ARPES. Unlike graphene, graphite is a three-dimension material the different position along z ̂ direction, the different the band structure of graphite will be. To graphite, the two valence π bands with the different incident photon energy which respect to different position along z ̂ direction, results in the periodically merge or split of two valence π bands. In addition I will use the tight-bind theory to describe the Fermi surface result from two valence π bands. The major goal is obtain a set of tight-binding parameters that could well-described Fermi surface at high binding energy, moreover using the same parameters to describe the Fermi surface at low binding energy. Then discuss the describing at low binding energy.

    Chapter 1 Introduction 1 Chapter 2 Photoemission Spectroscopy and Experimental Information 2 2.1 Introduction 2 2.2 The theory of photoemission process 4 2.3 Light source of photoemission 8 2.4 Angle-Resolved Photoemission Spectroscopy (ARPES) 12 2.5 Ultra-High Vacuum 17 Chapter 3 Tight-Binding Model to the Band Structure Calculation of Graphite 19 3.2 Tight-binding theory 20 3.2.1 Single layer graphene 28 3.2.2 Bilayer graphene 31 3.2.3 Graphite 35 3.3 Tight-binding Band Structure Calculation of Graphite near KHK 39 3.4 Conclusion 47 Chapter 4 Photoemission Spectroscopy of Graphite 49 4.1 Introduction 49 4.2 Sample preparation 49 4.3 The band structure of graphite near KHK axis 51 4.4 Discussion 55 Chapter 5 57 Appendix A: A Series of spectra and derivative of graphite 58 Reference 72

    Chapter 1
    1. M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite , Adv. Phys. 30, 139 (1981)
    2. A. Grüneis, Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene, PRB 78, 205425(2008)
    Chapter 2
    1. Stefan H fner, Photoelectron Spectroscopy, Springer
    2. Geim, A. K. et al. Graphene: status and prospects. Science 324, 1530 (2009)
    3. Booster, National Synchrotron Radiation Research Facility, Website of NSRRC
    4. National Synchrotron Radiation Research Center, Introduction to synchrotron radiation. Website of National Sunchrotron Radiation Research Center
    5. Damascelli, A. Probing the electronic structure of complex systems by ARPES, Phys. Scr. 109, 61-74 (2004)
    6. Dominic, A. Ricci, Photoemission studies of interface effect on thin films properties, Ph. D. thesism, University of Illinois at Urbana-Champaign (2006)
    7. Chia-Jen Hsu, Angle-resolved photoemission study of interlayer spacing in bilayer graphene and graphite, thesis
    8. K. Sugawara, Fermi surface and edge-localized states in graphite studied by
    high-resolution angle-resolved photoemission spectroscopy, PHYSICAL
    REVIEW B 73, 045124 2006
    9. Rong-Li Lo, Panel 1, Chapter 1, Surface Physics

    Chapter 3
    1. Chia-Jen Hsu, Angle-resolved photoemission study of interlayer spacing in bilayer graphene and graphite, thesis
    2. A. Grüneis, Preparation and electronic properties of potassium doped graphite single crystals, pss-RRL (2008)
    3. A. Grüneis, Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene, PRB 78, 205425(2008)
    4. M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite , Adv. Phys. 30, 139 (1981)

    Chapter 4
    1. Chia-Jen Hsu, Angle-resolved photoemission study of interlayer spacing in bilayer graphene and graphite, thesis
    2. Song Y. F., et al, Performance of an ultrahigh resolution cylindrical grating monochromator undulator beamline. Rev. of sci. inst. 77, 085102 (2006)
    3. Y. Baskin and L. Meyer, Lattice Constants of Graphite at Low Temperatures, PHYSICAL REVIEW VOLUM E 100, NUM BER 2

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE